A High-Order Fractional Parallel Scheme for Efficient Eigenvalue Computation

Eigenvalue problems play a fundamental role in many scientific and engineering disciplines, including structural mechanics, quantum physics, and control theory. In this paper, we propose a fast and stable fractional-order parallel algorithm for solving eigenvalue problems. The method is implemented...

Full description

Saved in:
Bibliographic Details
Main Authors: Mudassir Shams, Bruno Carpentieri
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/5/313
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849327149861830656
author Mudassir Shams
Bruno Carpentieri
author_facet Mudassir Shams
Bruno Carpentieri
author_sort Mudassir Shams
collection DOAJ
description Eigenvalue problems play a fundamental role in many scientific and engineering disciplines, including structural mechanics, quantum physics, and control theory. In this paper, we propose a fast and stable fractional-order parallel algorithm for solving eigenvalue problems. The method is implemented within a parallel computing framework, allowing simultaneous computations across multiple processors to improve both efficiency and reliability. A theoretical convergence analysis shows that the scheme achieves a local convergence order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><mi>κ</mi><mo>+</mo><mn>4</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>κ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula> denotes the Caputo fractional order prescribing the memory depth of the derivative term. Comparative evaluations based on memory utilization, residual error, CPU time, and iteration count demonstrate that the proposed parallel scheme outperforms existing methods in our test cases, exhibiting faster convergence and greater efficiency. These results highlight the method’s robustness and scalability for large-scale eigenvalue computations.
format Article
id doaj-art-260d87b5b6264eeb9f2e31efbbdc63c0
institution Kabale University
issn 2504-3110
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-260d87b5b6264eeb9f2e31efbbdc63c02025-08-20T03:47:58ZengMDPI AGFractal and Fractional2504-31102025-05-019531310.3390/fractalfract9050313A High-Order Fractional Parallel Scheme for Efficient Eigenvalue ComputationMudassir Shams0Bruno Carpentieri1Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, ItalyFaculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, ItalyEigenvalue problems play a fundamental role in many scientific and engineering disciplines, including structural mechanics, quantum physics, and control theory. In this paper, we propose a fast and stable fractional-order parallel algorithm for solving eigenvalue problems. The method is implemented within a parallel computing framework, allowing simultaneous computations across multiple processors to improve both efficiency and reliability. A theoretical convergence analysis shows that the scheme achieves a local convergence order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><mi>κ</mi><mo>+</mo><mn>4</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>κ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula> denotes the Caputo fractional order prescribing the memory depth of the derivative term. Comparative evaluations based on memory utilization, residual error, CPU time, and iteration count demonstrate that the proposed parallel scheme outperforms existing methods in our test cases, exhibiting faster convergence and greater efficiency. These results highlight the method’s robustness and scalability for large-scale eigenvalue computations.https://www.mdpi.com/2504-3110/9/5/313fractional-order methodsparallel eigenvalue computationcomputational efficiencyfractal-based convergence analysishigh-performance numerical methods
spellingShingle Mudassir Shams
Bruno Carpentieri
A High-Order Fractional Parallel Scheme for Efficient Eigenvalue Computation
Fractal and Fractional
fractional-order methods
parallel eigenvalue computation
computational efficiency
fractal-based convergence analysis
high-performance numerical methods
title A High-Order Fractional Parallel Scheme for Efficient Eigenvalue Computation
title_full A High-Order Fractional Parallel Scheme for Efficient Eigenvalue Computation
title_fullStr A High-Order Fractional Parallel Scheme for Efficient Eigenvalue Computation
title_full_unstemmed A High-Order Fractional Parallel Scheme for Efficient Eigenvalue Computation
title_short A High-Order Fractional Parallel Scheme for Efficient Eigenvalue Computation
title_sort high order fractional parallel scheme for efficient eigenvalue computation
topic fractional-order methods
parallel eigenvalue computation
computational efficiency
fractal-based convergence analysis
high-performance numerical methods
url https://www.mdpi.com/2504-3110/9/5/313
work_keys_str_mv AT mudassirshams ahighorderfractionalparallelschemeforefficienteigenvaluecomputation
AT brunocarpentieri ahighorderfractionalparallelschemeforefficienteigenvaluecomputation
AT mudassirshams highorderfractionalparallelschemeforefficienteigenvaluecomputation
AT brunocarpentieri highorderfractionalparallelschemeforefficienteigenvaluecomputation