Estimation of Potato Growth Parameters Under Limited Field Data Availability by Integrating Few-Shot Learning and Multi-Task Learning

Leaf chlorophyll content (LCC), leaf area index (LAI), and above-ground biomass (AGB) are important growth parameters for characterizing potato growth and predicting yield. While deep learning has demonstrated remarkable advancements in estimating crop growth parameters, the limited availability of...

Full description

Saved in:
Bibliographic Details
Main Authors: Sen Yang, Quan Feng, Faxu Guo, Wenwei Zhou
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/15/1638
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Leaf chlorophyll content (LCC), leaf area index (LAI), and above-ground biomass (AGB) are important growth parameters for characterizing potato growth and predicting yield. While deep learning has demonstrated remarkable advancements in estimating crop growth parameters, the limited availability of field data often compromises model accuracy and generalizability, impeding large-scale regional applications. This study proposes a novel deep learning model that integrates multi-task learning and few-shot learning to address the challenge of low data in growth parameter prediction. Two multi-task learning architectures, MTL-DCNN and MTL-MMOE, were designed based on deep convolutional neural networks (DCNNs) and multi-gate mixture-of-experts (MMOE) for the simultaneous estimation of LCC, LAI, and AGB from Sentinel-2 imagery. Building on this, a few-shot learning framework for growth prediction (FSLGP) was developed by integrating simulated spectral generation, model-agnostic meta-learning (MAML), and meta-transfer learning strategies, enabling accurate prediction of multiple growth parameters under limited data availability. The results demonstrated that the incorporation of calibrated simulated spectral data significantly improved the estimation accuracy of LCC, LAI, and AGB (R<sup>2</sup> = 0.62~0.73). Under scenarios with limited field measurement data, the multi-task deep learning model based on few-shot learning outperformed traditional mixed inversion methods in predicting potato growth parameters (R<sup>2</sup> = 0.69~0.73; rRMSE = 16.68%~28.13%). Among the two architectures, the MTL-MMOE model exhibited superior stability and robustness in multi-task learning. Independent spatiotemporal validation further confirmed the potential of MTL-MMOE in estimating LAI and AGB across different years and locations (R<sup>2</sup> = 0.37~0.52). These results collectively demonstrated that the proposed FSLGP framework could achieve reliable estimation of crop growth parameters using only a very limited number of in-field samples (approximately 80 samples). This study can provide a valuable technical reference for monitoring and predicting growth parameters in other crops.
ISSN:2077-0472