On the concept of optimality interval

The approximants to regular continued fractions constitute best approximations to the numbers they converge to in two ways known as the first and the second kind. This property of continued fractions provides a solution to Gosper's problem of the batting average: if the batting average of a bas...

Full description

Saved in:
Bibliographic Details
Main Authors: Lluís Bibiloni, Pelegrí Viader, Jaume Paradís
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202011420
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The approximants to regular continued fractions constitute best approximations to the numbers they converge to in two ways known as the first and the second kind. This property of continued fractions provides a solution to Gosper's problem of the batting average: if the batting average of a baseball player is 0.334, what is the minimum number of times he has been at bat? In this paper, we tackle somehow the inverse question: given a rational number P/Q, what is the set of all numbers for which P/Q is a best approximation of one or the other kind? We prove that in both cases these optimality sets are intervals and we give a precise description of their endpoints.
ISSN:0161-1712
1687-0425