An Optimization Framework for Allocating and Scheduling Multiple Tasks of Multiple Logistics Robots

This study addresses the multi-robot task allocation (MRTA) problem for logistics robots operating in zone-picking warehouse environments. With the rapid growth of e-commerce and the Fourth Industrial Revolution, logistics robots are increasingly deployed to manage high-volume order fulfillment. How...

Full description

Saved in:
Bibliographic Details
Main Authors: Byoungho Choi, Minkyu Kim, Heungseob Kim
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/11/1770
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study addresses the multi-robot task allocation (MRTA) problem for logistics robots operating in zone-picking warehouse environments. With the rapid growth of e-commerce and the Fourth Industrial Revolution, logistics robots are increasingly deployed to manage high-volume order fulfillment. However, efficiently assigning tasks to multiple robots is a complex and computationally intensive problem. To address this, we propose a five-step optimization framework that reduces computation time while maintaining practical applicability. The first step calculates and stores distances and paths between product locations using the A* algorithm, enabling reuse in subsequent computations. The second step performs hierarchical clustering of orders based on spatial similarity and capacity constraints to reduce the problem size. In the third step, the traveling salesman problem (TSP) is formulated to determine the optimal execution sequence within each cluster. The fourth step uses a mixed integer linear programming (MILP) model to allocate clusters to robots while minimizing the overall makespan. Finally, the fifth step incorporates battery constraints by optimizing the task sequence and partial charging schedule for each robot. Numerical experiments were conducted using up to 1000 orders and 100 robots, and the results confirmed that the proposed method is scalable and effective for large-scale scenarios.
ISSN:2227-7390