Optimizing of Nanocellulose Extraction From Highland Bamboo Arundinaria Alpina for Sustainable Bio-Nanomaterials via Response Surface Methodology

Nanocellulose (NC) extraction from agricultural waste and lignocellulosic biomass residues has drawn considerable interest due to its low cost and wide availability. The environmental issues linked to nonrenewable materials have underscored the need for renewable alternatives that are biocompatible,...

Full description

Saved in:
Bibliographic Details
Main Authors: Kafi Mohamed Hamed, Ermias Girma Aklilu, Temesgen Abeto Amibo, Ebise Getacho Bacha
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Advances in Polymer Technology
Online Access:http://dx.doi.org/10.1155/adv/5462685
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanocellulose (NC) extraction from agricultural waste and lignocellulosic biomass residues has drawn considerable interest due to its low cost and wide availability. The environmental issues linked to nonrenewable materials have underscored the need for renewable alternatives that are biocompatible, biodegradable, and eco-friendly. This study aimed to investigate the potential of Ethiopian highland bamboo Arundinaria alpina for NC extraction by using acid hydrolysis. An experimental design incorporating response surface methodology (RSM) was applied to identify the optimal hydrolysis process parameters for NC extraction. The optimum conditions for NC extraction were a reaction time of 60 min, temperature of 40°C, and acid concentration of 61.40 wt%, with a yield of 43.15%. Bamboo and extracted NC were characterized for their chemical composition, particle size distribution, and crystallinity, using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray diffraction (XRD), respectively. The resulting NC had a particle size of 79.64 nm. XRD analysis revealed the crystallinity indices of the bamboo and its corresponding NC was 44.60% and 74.07%, respectively. These results indicate that highland bamboo A. alpina is a promising lignocellulosic source for sustainable NC extraction, optimization, and industrial applications.
ISSN:1098-2329