Nanophotonic-enhanced photoacoustic imaging for brain tumor detection
Abstract Photoacoustic brain imaging (PABI) has emerged as a promising biomedical imaging modality, combining high contrast of optical imaging with deep tissue penetration of ultrasound imaging. This review explores the application of photoacoustic imaging in brain tumor imaging, highlighting the sy...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-03-01
|
| Series: | Journal of Nanobiotechnology |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12951-025-03204-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Photoacoustic brain imaging (PABI) has emerged as a promising biomedical imaging modality, combining high contrast of optical imaging with deep tissue penetration of ultrasound imaging. This review explores the application of photoacoustic imaging in brain tumor imaging, highlighting the synergy between nanomaterials and state of the art optical techniques to achieve high-resolution imaging of deeper brain tissues. PABI leverages the photoacoustic effect, where absorbed light energy causes thermoelastic expansion, generating ultrasound waves that are detected and converted into images. This technique enables precise diagnosis, therapy monitoring, and enhanced clinical screening, specifically in the management of complex diseases such as breast cancer, lymphatic disorder, and neurological conditions. Despite integration of photoacoustic agents and ultrasound radiation, providing a comprehensive overview of current methodologies, major obstacles in brain tumor treatment, and future directions for improving diagnostic and therapeutic outcomes. The review underscores the significance of PABI as a robust research tool and medical method, with the potential to revolutionize brain disease diagnosis and treatment. Graphical Abstract |
|---|---|
| ISSN: | 1477-3155 |