Enhanced damage mechanism of reinforced concrete targets impacted by reactive PELE: An analytical model and experimental validation

Compared with PELE with inert fillings such as polyethylene and nylon, reactive PELE (RPELE) shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction. In present work, an analytical model describing the jacket deformation and concrete target damage impa...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiahao Zhang, Mengmeng Guo, Sheng Zhou, Chao Ge, Pengwan Chen, Qingbo Yu
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2024-12-01
Series:Defence Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214914724001648
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compared with PELE with inert fillings such as polyethylene and nylon, reactive PELE (RPELE) shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction. In present work, an analytical model describing the jacket deformation and concrete target damage impacted by RPELE was presented, in which the radial rarefaction and filling deflagration reaction were considered. The impact tests of RPELE on concrete target in the 592–1012 m/s were carried out to verify the analytical model. Based on the analytical model, the angle-length evolution mechanism of the jacket bending-curling deformation was revealed, and the concrete target damage was further analyzed. One can find out that the average prediction errors of the front crater, opening and back crater are 6.8%, 8.5% and 7.1%, respectively. Moreover, the effects of radial rarefaction and deflagration were discussed. It was found that the neglect of radial rarefaction overestimates the jacket deformation and concrete target damage, while the deflagration reaction of filling increases the diameter of the front crater, opening and back crater by 25.4%, 24.3% and 31.1%, respectively. The research provides a valuable reference for understanding and predicting the jacket deformation and concrete target damage impacted by RPELE.
ISSN:2214-9147