Enhancing energy harvesting capabilities using lead-free, flexible piezoelectric poly (vinylidene fluoride) tapes
Poly(vinylidene fluoride) (PVDF) has been widely investigated as an energy harvesting material not only for its piezoelectric properties but also for being flexible, lead-free piezoelectric properties, and processing versatility. To enhance its piezoelectric performance, in this study, an additive w...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-08-01
|
| Series: | Polymer Testing |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S0142941825001527 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850272816940711936 |
|---|---|
| author | Amanda Melo David Esteves Ignacio Ezpeleta Cintia Mateo-Mateo Nelson Durães |
| author_facet | Amanda Melo David Esteves Ignacio Ezpeleta Cintia Mateo-Mateo Nelson Durães |
| author_sort | Amanda Melo |
| collection | DOAJ |
| description | Poly(vinylidene fluoride) (PVDF) has been widely investigated as an energy harvesting material not only for its piezoelectric properties but also for being flexible, lead-free piezoelectric properties, and processing versatility. To enhance its piezoelectric performance, in this study, an additive was blended with PVDF to facilitate the crystalline transformation from α-phase to β-phase. This study explores the influence of two manufacturing processes, extrusion (EX) and compression moulding (CM), and the influence of different stretching and polarisation conditions on the piezoelectric performance of PVDF tapes for their integration into a cantilever beam for energy harvesting applications. The heat stretching process for EX and CM tapes was conducted at distinct temperatures (80° and 120 °C) and stretching speeds (300 and 10 mm/min), leading to different stretch ratios (3.0 and 4.50) that effectively raised the β-phase. Structural changes in the crystalline phases were identified using X-ray diffraction and Fourier transform infrared spectroscopy. Following this, the dipoles were oriented in the direction of an applied electric field (400–500 kV/cm). The piezoelectric performance was characterized by d33 values, and peak-to-peak voltage, under sinusoidal tensile stress, was obtained using a universal tensile testing machine. A d33 value of 25–30 pC/N and a peak-to-peak voltage of 27–35 V were obtained. Additionally, the piezoelectric behaviour was observed by arranging the tapes in a cantilever made of fibreglass composite and subjecting it to vibrational excitation at the resonance frequency. Maximum values of output voltage of 12 V for each tape were obtained under cantilever fixture. |
| format | Article |
| id | doaj-art-24ffb2df55b84bbc9dd0170a187e8d07 |
| institution | OA Journals |
| issn | 1873-2348 |
| language | English |
| publishDate | 2025-08-01 |
| publisher | Elsevier |
| record_format | Article |
| series | Polymer Testing |
| spelling | doaj-art-24ffb2df55b84bbc9dd0170a187e8d072025-08-20T01:51:41ZengElsevierPolymer Testing1873-23482025-08-0114910883810.1016/j.polymertesting.2025.108838Enhancing energy harvesting capabilities using lead-free, flexible piezoelectric poly (vinylidene fluoride) tapesAmanda Melo0David Esteves1Ignacio Ezpeleta2Cintia Mateo-Mateo3Nelson Durães4CENTITVC Centro de Nanotecnologia e Materiais Técnicos e Funcionais, R. Fernando Mesquita 2785, 4760-034, Vila Nova de Famalicão, Portugal; Corresponding author.CENTITVC Centro de Nanotecnologia e Materiais Técnicos e Funcionais, R. Fernando Mesquita 2785, 4760-034, Vila Nova de Famalicão, PortugalAIMEN Technology Centre, Polígono Industrial de Cataboi SUR-PPI-2, 36418, O Porriño, SpainAIMEN Technology Centre, Polígono Industrial de Cataboi SUR-PPI-2, 36418, O Porriño, SpainCENTITVC Centro de Nanotecnologia e Materiais Técnicos e Funcionais, R. Fernando Mesquita 2785, 4760-034, Vila Nova de Famalicão, PortugalPoly(vinylidene fluoride) (PVDF) has been widely investigated as an energy harvesting material not only for its piezoelectric properties but also for being flexible, lead-free piezoelectric properties, and processing versatility. To enhance its piezoelectric performance, in this study, an additive was blended with PVDF to facilitate the crystalline transformation from α-phase to β-phase. This study explores the influence of two manufacturing processes, extrusion (EX) and compression moulding (CM), and the influence of different stretching and polarisation conditions on the piezoelectric performance of PVDF tapes for their integration into a cantilever beam for energy harvesting applications. The heat stretching process for EX and CM tapes was conducted at distinct temperatures (80° and 120 °C) and stretching speeds (300 and 10 mm/min), leading to different stretch ratios (3.0 and 4.50) that effectively raised the β-phase. Structural changes in the crystalline phases were identified using X-ray diffraction and Fourier transform infrared spectroscopy. Following this, the dipoles were oriented in the direction of an applied electric field (400–500 kV/cm). The piezoelectric performance was characterized by d33 values, and peak-to-peak voltage, under sinusoidal tensile stress, was obtained using a universal tensile testing machine. A d33 value of 25–30 pC/N and a peak-to-peak voltage of 27–35 V were obtained. Additionally, the piezoelectric behaviour was observed by arranging the tapes in a cantilever made of fibreglass composite and subjecting it to vibrational excitation at the resonance frequency. Maximum values of output voltage of 12 V for each tape were obtained under cantilever fixture.http://www.sciencedirect.com/science/article/pii/S0142941825001527Lead-free piezoelectricHomopolymer poly (vinylidene fluoride)Phase transformationPolingPiezoelectric propertiesEnergy harvesting |
| spellingShingle | Amanda Melo David Esteves Ignacio Ezpeleta Cintia Mateo-Mateo Nelson Durães Enhancing energy harvesting capabilities using lead-free, flexible piezoelectric poly (vinylidene fluoride) tapes Polymer Testing Lead-free piezoelectric Homopolymer poly (vinylidene fluoride) Phase transformation Poling Piezoelectric properties Energy harvesting |
| title | Enhancing energy harvesting capabilities using lead-free, flexible piezoelectric poly (vinylidene fluoride) tapes |
| title_full | Enhancing energy harvesting capabilities using lead-free, flexible piezoelectric poly (vinylidene fluoride) tapes |
| title_fullStr | Enhancing energy harvesting capabilities using lead-free, flexible piezoelectric poly (vinylidene fluoride) tapes |
| title_full_unstemmed | Enhancing energy harvesting capabilities using lead-free, flexible piezoelectric poly (vinylidene fluoride) tapes |
| title_short | Enhancing energy harvesting capabilities using lead-free, flexible piezoelectric poly (vinylidene fluoride) tapes |
| title_sort | enhancing energy harvesting capabilities using lead free flexible piezoelectric poly vinylidene fluoride tapes |
| topic | Lead-free piezoelectric Homopolymer poly (vinylidene fluoride) Phase transformation Poling Piezoelectric properties Energy harvesting |
| url | http://www.sciencedirect.com/science/article/pii/S0142941825001527 |
| work_keys_str_mv | AT amandamelo enhancingenergyharvestingcapabilitiesusingleadfreeflexiblepiezoelectricpolyvinylidenefluoridetapes AT davidesteves enhancingenergyharvestingcapabilitiesusingleadfreeflexiblepiezoelectricpolyvinylidenefluoridetapes AT ignacioezpeleta enhancingenergyharvestingcapabilitiesusingleadfreeflexiblepiezoelectricpolyvinylidenefluoridetapes AT cintiamateomateo enhancingenergyharvestingcapabilitiesusingleadfreeflexiblepiezoelectricpolyvinylidenefluoridetapes AT nelsonduraes enhancingenergyharvestingcapabilitiesusingleadfreeflexiblepiezoelectricpolyvinylidenefluoridetapes |