Energy Efficiency of Agroforestry Farms in Angola

The main objective of energy balance analysis is to guide farmers in making informed decisions that promote the efficient management of natural resources, optimise the use of agricultural inputs, and improve the overall economic performance of their farms. In addition, it supports the adoption of su...

Full description

Saved in:
Bibliographic Details
Main Authors: Oloiva Sousa, Ludgero Sousa, Fernando Santos, Maria Raquel Lucas, José Aranha
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/15/5/1144
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main objective of energy balance analysis is to guide farmers in making informed decisions that promote the efficient management of natural resources, optimise the use of agricultural inputs, and improve the overall economic performance of their farms. In addition, it supports the adoption of sustainable agricultural practices, such as crop diversification, the use of renewable energy sources, and the recycling of agricultural by-products and residues into natural energy sources or fertilisers. This paper analyses the variation in energy efficiency between 2019 and 2022 of the main crops in Angola: maize, soybean, and rice, and the forest production of eucalyptus biomass in agroforestry farms. The research was based on the responses to interviews conducted with the managers of the farms regarding the machinery used, fuels and lubricants, labour, seeds, phytopharmaceuticals, and fertilisers. The quantities are gathered by converting data into Megajoules (MJ). The results show variations in efficiency and energy balance. In corn, efficiency fluctuated between 1.32 MJ in 2019 and 1.41 MJ in 2020, falling to 0.94 MJ in 2021 due to the COVID-19 pandemic before rising to 1.31 MJ in 2022. For soybeans, the energy balance went from a deficit of −8223.48 MJ in 2019 to a positive 11,974.62 MJ in 2022, indicating better use of resources. Rice stood out for its high efficiency, reaching 81,541.33 MJ in 2021, while wood production showed negative balances, evidencing the need for more effective strategies. This research concludes that understanding the energy balance of agricultural operations in Angola is essential not only to achieve greater sustainability and profitability but also to strengthen the resilience of agricultural systems against external factors such as climate change, fluctuations in input prices, and economic crises. A comprehensive understanding of the energy balance allows farmers to assess the true cost-effectiveness of their operations, identify energy inefficiencies, and implement more effective strategies to maximise productivity while minimising environmental impacts.
ISSN:2073-4395