Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>
<i>Salvia miltiorrhiza</i>, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Molecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1420-3049/29/24/5892 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850085570005434368 |
|---|---|
| author | Cuicui Han Xingwen Dong Xiaowen Xing Yun Wang Xiaobing Feng Wenjuan Sang Yifei Feng Luyao Yu Mengxuan Chen Hongyuan Hao Taohong Huang Bailin Li Wenhui Wu Zheng Zhou Ying He |
| author_facet | Cuicui Han Xingwen Dong Xiaowen Xing Yun Wang Xiaobing Feng Wenjuan Sang Yifei Feng Luyao Yu Mengxuan Chen Hongyuan Hao Taohong Huang Bailin Li Wenhui Wu Zheng Zhou Ying He |
| author_sort | Cuicui Han |
| collection | DOAJ |
| description | <i>Salvia miltiorrhiza</i>, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development. Previous studies have demonstrated that GAs can promote salvianolic acid accumulation in <i>S. miltiorrhiza</i>; however, the underlying mechanism requires further investigation. Here, we identified a GA-induced R2R3MYB transcription factor (TF), <i>Sm</i>MYB71, from a transcriptome library of GA-treated <i>S. miltiorrhiza</i>. <i>Sm</i>MYB71 was highly expressed in the root of <i>S. miltiorrhiza</i> and localized to the nucleus. <i>Sm</i>MYB71-knockout hairy roots showed higher salvianolic acid accumulation compared to wild lines. Overexpressing <i>Sm</i>MYB71 in <i>S. miltiorrhiza</i> hairy roots significantly decreased the content of salvianolic acid by downregulating key salvianolic acid biosynthesis enzymes such as <i>Sm</i>RAS and <i>Sm</i>CYP98A14. The GCC box in the promoter of <i>Sm</i>MYB71 can bind with <i>Sm</i>ERF115, suggesting that <i>Sm</i>MYB71 is regulated by <i>Sm</i>ERF115 in salvianolic acid biosynthesis. These findings demonstrate a novel regulatory role of <i>Sm</i>MYB71 in GA-mediated phenolic acid biosynthesis. With the development of CRISPR/Cas9-based genome editing technology, the <i>Sm</i>MYB71 regulation mechanism of salvianolic acid biosynthesis provides a potential target gene for metabolic engineering to increase the quality of <i>S. miltiorrhiza</i>. |
| format | Article |
| id | doaj-art-24aebf95a86c48d8b0e4c495ec97c8d9 |
| institution | DOAJ |
| issn | 1420-3049 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Molecules |
| spelling | doaj-art-24aebf95a86c48d8b0e4c495ec97c8d92025-08-20T02:43:42ZengMDPI AGMolecules1420-30492024-12-012924589210.3390/molecules29245892Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>Cuicui Han0Xingwen Dong1Xiaowen Xing2Yun Wang3Xiaobing Feng4Wenjuan Sang5Yifei Feng6Luyao Yu7Mengxuan Chen8Hongyuan Hao9Taohong Huang10Bailin Li11Wenhui Wu12Zheng Zhou13Ying He14College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaBiomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai 200444, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, ChinaShanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, ChinaShanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, ChinaShanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, China<i>Salvia miltiorrhiza</i>, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development. Previous studies have demonstrated that GAs can promote salvianolic acid accumulation in <i>S. miltiorrhiza</i>; however, the underlying mechanism requires further investigation. Here, we identified a GA-induced R2R3MYB transcription factor (TF), <i>Sm</i>MYB71, from a transcriptome library of GA-treated <i>S. miltiorrhiza</i>. <i>Sm</i>MYB71 was highly expressed in the root of <i>S. miltiorrhiza</i> and localized to the nucleus. <i>Sm</i>MYB71-knockout hairy roots showed higher salvianolic acid accumulation compared to wild lines. Overexpressing <i>Sm</i>MYB71 in <i>S. miltiorrhiza</i> hairy roots significantly decreased the content of salvianolic acid by downregulating key salvianolic acid biosynthesis enzymes such as <i>Sm</i>RAS and <i>Sm</i>CYP98A14. The GCC box in the promoter of <i>Sm</i>MYB71 can bind with <i>Sm</i>ERF115, suggesting that <i>Sm</i>MYB71 is regulated by <i>Sm</i>ERF115 in salvianolic acid biosynthesis. These findings demonstrate a novel regulatory role of <i>Sm</i>MYB71 in GA-mediated phenolic acid biosynthesis. With the development of CRISPR/Cas9-based genome editing technology, the <i>Sm</i>MYB71 regulation mechanism of salvianolic acid biosynthesis provides a potential target gene for metabolic engineering to increase the quality of <i>S. miltiorrhiza</i>.https://www.mdpi.com/1420-3049/29/24/5892salvianolic acid<i>Sm</i>MYB71gibberellins<i>Sm</i>ERF115biosynthesis |
| spellingShingle | Cuicui Han Xingwen Dong Xiaowen Xing Yun Wang Xiaobing Feng Wenjuan Sang Yifei Feng Luyao Yu Mengxuan Chen Hongyuan Hao Taohong Huang Bailin Li Wenhui Wu Zheng Zhou Ying He Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i> Molecules salvianolic acid <i>Sm</i>MYB71 gibberellins <i>Sm</i>ERF115 biosynthesis |
| title | Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i> |
| title_full | Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i> |
| title_fullStr | Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i> |
| title_full_unstemmed | Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i> |
| title_short | Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i> |
| title_sort | gibberellin induced transcription factor i sm i myb71 negatively regulates salvianolic acid biosynthesis in i salvia miltiorrhiza i |
| topic | salvianolic acid <i>Sm</i>MYB71 gibberellins <i>Sm</i>ERF115 biosynthesis |
| url | https://www.mdpi.com/1420-3049/29/24/5892 |
| work_keys_str_mv | AT cuicuihan gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT xingwendong gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT xiaowenxing gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT yunwang gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT xiaobingfeng gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT wenjuansang gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT yifeifeng gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT luyaoyu gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT mengxuanchen gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT hongyuanhao gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT taohonghuang gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT bailinli gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT wenhuiwu gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT zhengzhou gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai AT yinghe gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai |