Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>

<i>Salvia miltiorrhiza</i>, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that...

Full description

Saved in:
Bibliographic Details
Main Authors: Cuicui Han, Xingwen Dong, Xiaowen Xing, Yun Wang, Xiaobing Feng, Wenjuan Sang, Yifei Feng, Luyao Yu, Mengxuan Chen, Hongyuan Hao, Taohong Huang, Bailin Li, Wenhui Wu, Zheng Zhou, Ying He
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/24/5892
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850085570005434368
author Cuicui Han
Xingwen Dong
Xiaowen Xing
Yun Wang
Xiaobing Feng
Wenjuan Sang
Yifei Feng
Luyao Yu
Mengxuan Chen
Hongyuan Hao
Taohong Huang
Bailin Li
Wenhui Wu
Zheng Zhou
Ying He
author_facet Cuicui Han
Xingwen Dong
Xiaowen Xing
Yun Wang
Xiaobing Feng
Wenjuan Sang
Yifei Feng
Luyao Yu
Mengxuan Chen
Hongyuan Hao
Taohong Huang
Bailin Li
Wenhui Wu
Zheng Zhou
Ying He
author_sort Cuicui Han
collection DOAJ
description <i>Salvia miltiorrhiza</i>, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development. Previous studies have demonstrated that GAs can promote salvianolic acid accumulation in <i>S. miltiorrhiza</i>; however, the underlying mechanism requires further investigation. Here, we identified a GA-induced R2R3MYB transcription factor (TF), <i>Sm</i>MYB71, from a transcriptome library of GA-treated <i>S. miltiorrhiza</i>. <i>Sm</i>MYB71 was highly expressed in the root of <i>S. miltiorrhiza</i> and localized to the nucleus. <i>Sm</i>MYB71-knockout hairy roots showed higher salvianolic acid accumulation compared to wild lines. Overexpressing <i>Sm</i>MYB71 in <i>S. miltiorrhiza</i> hairy roots significantly decreased the content of salvianolic acid by downregulating key salvianolic acid biosynthesis enzymes such as <i>Sm</i>RAS and <i>Sm</i>CYP98A14. The GCC box in the promoter of <i>Sm</i>MYB71 can bind with <i>Sm</i>ERF115, suggesting that <i>Sm</i>MYB71 is regulated by <i>Sm</i>ERF115 in salvianolic acid biosynthesis. These findings demonstrate a novel regulatory role of <i>Sm</i>MYB71 in GA-mediated phenolic acid biosynthesis. With the development of CRISPR/Cas9-based genome editing technology, the <i>Sm</i>MYB71 regulation mechanism of salvianolic acid biosynthesis provides a potential target gene for metabolic engineering to increase the quality of <i>S. miltiorrhiza</i>.
format Article
id doaj-art-24aebf95a86c48d8b0e4c495ec97c8d9
institution DOAJ
issn 1420-3049
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj-art-24aebf95a86c48d8b0e4c495ec97c8d92025-08-20T02:43:42ZengMDPI AGMolecules1420-30492024-12-012924589210.3390/molecules29245892Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>Cuicui Han0Xingwen Dong1Xiaowen Xing2Yun Wang3Xiaobing Feng4Wenjuan Sang5Yifei Feng6Luyao Yu7Mengxuan Chen8Hongyuan Hao9Taohong Huang10Bailin Li11Wenhui Wu12Zheng Zhou13Ying He14College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaBiomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai 200444, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, ChinaShanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, ChinaShanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, ChinaShanghai Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, ChinaNavy Special Medical Centre, Second Military Medical University, Shanghai 200433, China<i>Salvia miltiorrhiza</i>, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development. Previous studies have demonstrated that GAs can promote salvianolic acid accumulation in <i>S. miltiorrhiza</i>; however, the underlying mechanism requires further investigation. Here, we identified a GA-induced R2R3MYB transcription factor (TF), <i>Sm</i>MYB71, from a transcriptome library of GA-treated <i>S. miltiorrhiza</i>. <i>Sm</i>MYB71 was highly expressed in the root of <i>S. miltiorrhiza</i> and localized to the nucleus. <i>Sm</i>MYB71-knockout hairy roots showed higher salvianolic acid accumulation compared to wild lines. Overexpressing <i>Sm</i>MYB71 in <i>S. miltiorrhiza</i> hairy roots significantly decreased the content of salvianolic acid by downregulating key salvianolic acid biosynthesis enzymes such as <i>Sm</i>RAS and <i>Sm</i>CYP98A14. The GCC box in the promoter of <i>Sm</i>MYB71 can bind with <i>Sm</i>ERF115, suggesting that <i>Sm</i>MYB71 is regulated by <i>Sm</i>ERF115 in salvianolic acid biosynthesis. These findings demonstrate a novel regulatory role of <i>Sm</i>MYB71 in GA-mediated phenolic acid biosynthesis. With the development of CRISPR/Cas9-based genome editing technology, the <i>Sm</i>MYB71 regulation mechanism of salvianolic acid biosynthesis provides a potential target gene for metabolic engineering to increase the quality of <i>S. miltiorrhiza</i>.https://www.mdpi.com/1420-3049/29/24/5892salvianolic acid<i>Sm</i>MYB71gibberellins<i>Sm</i>ERF115biosynthesis
spellingShingle Cuicui Han
Xingwen Dong
Xiaowen Xing
Yun Wang
Xiaobing Feng
Wenjuan Sang
Yifei Feng
Luyao Yu
Mengxuan Chen
Hongyuan Hao
Taohong Huang
Bailin Li
Wenhui Wu
Zheng Zhou
Ying He
Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>
Molecules
salvianolic acid
<i>Sm</i>MYB71
gibberellins
<i>Sm</i>ERF115
biosynthesis
title Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>
title_full Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>
title_fullStr Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>
title_full_unstemmed Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>
title_short Gibberellin-Induced Transcription Factor <i>Sm</i>MYB71 Negatively Regulates Salvianolic Acid Biosynthesis in <i>Salvia miltiorrhiza</i>
title_sort gibberellin induced transcription factor i sm i myb71 negatively regulates salvianolic acid biosynthesis in i salvia miltiorrhiza i
topic salvianolic acid
<i>Sm</i>MYB71
gibberellins
<i>Sm</i>ERF115
biosynthesis
url https://www.mdpi.com/1420-3049/29/24/5892
work_keys_str_mv AT cuicuihan gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT xingwendong gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT xiaowenxing gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT yunwang gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT xiaobingfeng gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT wenjuansang gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT yifeifeng gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT luyaoyu gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT mengxuanchen gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT hongyuanhao gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT taohonghuang gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT bailinli gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT wenhuiwu gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT zhengzhou gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai
AT yinghe gibberellininducedtranscriptionfactorismimyb71negativelyregulatessalvianolicacidbiosynthesisinisalviamiltiorrhizai