Microstructural evolution, mechanical and thermophysical properties of (TiZrNbTa)(C1-xNx) multi-component carbonitrides

A series of multi-component carbonitrides (TiZrNbTa)(C1-xNx) (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) were successfully synthesized via spark plasma sintering (SPS) at 2000 °C under 35 MPa for 10 min. The effects of nitrogen content on microstructure, mechanical properties and thermal performance were syste...

Full description

Saved in:
Bibliographic Details
Main Authors: Ming Li, Wen Zhang, Ziheng Chen, Fangwang Fu, Jinyong Zhang, Lin Ren, Fan Zhang, Weimin Wang, Zhengyi Fu
Format: Article
Language:English
Published: Elsevier 2025-09-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785425018691
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850068004508794880
author Ming Li
Wen Zhang
Ziheng Chen
Fangwang Fu
Jinyong Zhang
Lin Ren
Fan Zhang
Weimin Wang
Zhengyi Fu
author_facet Ming Li
Wen Zhang
Ziheng Chen
Fangwang Fu
Jinyong Zhang
Lin Ren
Fan Zhang
Weimin Wang
Zhengyi Fu
author_sort Ming Li
collection DOAJ
description A series of multi-component carbonitrides (TiZrNbTa)(C1-xNx) (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) were successfully synthesized via spark plasma sintering (SPS) at 2000 °C under 35 MPa for 10 min. The effects of nitrogen content on microstructure, mechanical properties and thermal performance were systematically investigated. The results demonstrate that the nitrogen incorporation induces lattice distortion in the non-metallic sublattice, significantly reducing porosity and enhancing the densification process, while exhibiting negligible influence on the average grain size. Moreover, moderate nitrogen doping optimizes the mechanical properties, whereas excessive doping proves detrimental. The MCC8N2 sample (x = 0.2) demonstrates optimal mechanical performance, exhibiting a flexural strength of 768 ± 17 MPa, fracture toughness of 6.2 ± 0.3 MPa m1/2 and Vickers hardness of 20.6 ± 0.2 GPa. Furthermore, the nitrogen incorporation effectively reduces the thermal conductivity through intensified lattice distortion and enhanced phonon scattering. The MCC5N5 sample (x = 0.5) displays the thermal conductivity of 11.65 W m−1 K−1 at 373 K and 30.27 W m−1 K−1 at 1373 K. These findings highlight the significant potential of (TiZrNbTa)(C1-xNx) carbonitrides for high-temperature thermal insulation applications.
format Article
id doaj-art-249a52eab3c443a3baa99872d08068af
institution DOAJ
issn 2238-7854
language English
publishDate 2025-09-01
publisher Elsevier
record_format Article
series Journal of Materials Research and Technology
spelling doaj-art-249a52eab3c443a3baa99872d08068af2025-08-20T02:48:10ZengElsevierJournal of Materials Research and Technology2238-78542025-09-0138758310.1016/j.jmrt.2025.07.211Microstructural evolution, mechanical and thermophysical properties of (TiZrNbTa)(C1-xNx) multi-component carbonitridesMing Li0Wen Zhang1Ziheng Chen2Fangwang Fu3Jinyong Zhang4Lin Ren5Fan Zhang6Weimin Wang7Zhengyi Fu8Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR ChinaHubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China; Corresponding author. Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, PR China.Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR ChinaHubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR ChinaState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR ChinaState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR ChinaHubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China; Corresponding author. Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, PR China.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR ChinaHubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR ChinaA series of multi-component carbonitrides (TiZrNbTa)(C1-xNx) (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) were successfully synthesized via spark plasma sintering (SPS) at 2000 °C under 35 MPa for 10 min. The effects of nitrogen content on microstructure, mechanical properties and thermal performance were systematically investigated. The results demonstrate that the nitrogen incorporation induces lattice distortion in the non-metallic sublattice, significantly reducing porosity and enhancing the densification process, while exhibiting negligible influence on the average grain size. Moreover, moderate nitrogen doping optimizes the mechanical properties, whereas excessive doping proves detrimental. The MCC8N2 sample (x = 0.2) demonstrates optimal mechanical performance, exhibiting a flexural strength of 768 ± 17 MPa, fracture toughness of 6.2 ± 0.3 MPa m1/2 and Vickers hardness of 20.6 ± 0.2 GPa. Furthermore, the nitrogen incorporation effectively reduces the thermal conductivity through intensified lattice distortion and enhanced phonon scattering. The MCC5N5 sample (x = 0.5) displays the thermal conductivity of 11.65 W m−1 K−1 at 373 K and 30.27 W m−1 K−1 at 1373 K. These findings highlight the significant potential of (TiZrNbTa)(C1-xNx) carbonitrides for high-temperature thermal insulation applications.http://www.sciencedirect.com/science/article/pii/S2238785425018691Multi-component carbonitrideMicrostructureMechanical propertiesThermophysical properties
spellingShingle Ming Li
Wen Zhang
Ziheng Chen
Fangwang Fu
Jinyong Zhang
Lin Ren
Fan Zhang
Weimin Wang
Zhengyi Fu
Microstructural evolution, mechanical and thermophysical properties of (TiZrNbTa)(C1-xNx) multi-component carbonitrides
Journal of Materials Research and Technology
Multi-component carbonitride
Microstructure
Mechanical properties
Thermophysical properties
title Microstructural evolution, mechanical and thermophysical properties of (TiZrNbTa)(C1-xNx) multi-component carbonitrides
title_full Microstructural evolution, mechanical and thermophysical properties of (TiZrNbTa)(C1-xNx) multi-component carbonitrides
title_fullStr Microstructural evolution, mechanical and thermophysical properties of (TiZrNbTa)(C1-xNx) multi-component carbonitrides
title_full_unstemmed Microstructural evolution, mechanical and thermophysical properties of (TiZrNbTa)(C1-xNx) multi-component carbonitrides
title_short Microstructural evolution, mechanical and thermophysical properties of (TiZrNbTa)(C1-xNx) multi-component carbonitrides
title_sort microstructural evolution mechanical and thermophysical properties of tizrnbta c1 xnx multi component carbonitrides
topic Multi-component carbonitride
Microstructure
Mechanical properties
Thermophysical properties
url http://www.sciencedirect.com/science/article/pii/S2238785425018691
work_keys_str_mv AT mingli microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides
AT wenzhang microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides
AT zihengchen microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides
AT fangwangfu microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides
AT jinyongzhang microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides
AT linren microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides
AT fanzhang microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides
AT weiminwang microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides
AT zhengyifu microstructuralevolutionmechanicalandthermophysicalpropertiesoftizrnbtac1xnxmulticomponentcarbonitrides