Annihilators of nilpotent elements

Let x be a nilpotent element of an infinite ring R (not necessarily with 1). We prove that A(x)—the two-sided annihilator of x—has a large intersection with any infinite ideal I of R in the sense that card(A(x)∩I)=cardI. In particular, cardA(x)=cardR; and this is applied to prove that if N is the se...

Full description

Saved in:
Bibliographic Details
Main Author: Abraham A. Klein
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.3517
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549010913624064
author Abraham A. Klein
author_facet Abraham A. Klein
author_sort Abraham A. Klein
collection DOAJ
description Let x be a nilpotent element of an infinite ring R (not necessarily with 1). We prove that A(x)—the two-sided annihilator of x—has a large intersection with any infinite ideal I of R in the sense that card(A(x)∩I)=cardI. In particular, cardA(x)=cardR; and this is applied to prove that if N is the set of nilpotent elements of R and R≠N, then card(R\N)≥cardN.
format Article
id doaj-art-248f665640a44d2891bdd9da5e67048a
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2005-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-248f665640a44d2891bdd9da5e67048a2025-02-03T06:12:19ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252005-01-012005213517351910.1155/IJMMS.2005.3517Annihilators of nilpotent elementsAbraham A. Klein0Department of Pure Mathematics, School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, IsraelLet x be a nilpotent element of an infinite ring R (not necessarily with 1). We prove that A(x)—the two-sided annihilator of x—has a large intersection with any infinite ideal I of R in the sense that card(A(x)∩I)=cardI. In particular, cardA(x)=cardR; and this is applied to prove that if N is the set of nilpotent elements of R and R≠N, then card(R\N)≥cardN.http://dx.doi.org/10.1155/IJMMS.2005.3517
spellingShingle Abraham A. Klein
Annihilators of nilpotent elements
International Journal of Mathematics and Mathematical Sciences
title Annihilators of nilpotent elements
title_full Annihilators of nilpotent elements
title_fullStr Annihilators of nilpotent elements
title_full_unstemmed Annihilators of nilpotent elements
title_short Annihilators of nilpotent elements
title_sort annihilators of nilpotent elements
url http://dx.doi.org/10.1155/IJMMS.2005.3517
work_keys_str_mv AT abrahamaklein annihilatorsofnilpotentelements