Vision-Degree-Driven Loading Strategy for Real-Time Large-Scale Scene Rendering

Large-scale scene rendering faces challenges in managing massive scene data and mitigating rendering latency caused by suboptimal loading sequences. Although current approaches utilize Level of Detail (LOD) for dynamic resource loading, two limitations remain. One is loading priority, which does not...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Ding, Ying Song
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Computers
Subjects:
Online Access:https://www.mdpi.com/2073-431X/14/7/260
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large-scale scene rendering faces challenges in managing massive scene data and mitigating rendering latency caused by suboptimal loading sequences. Although current approaches utilize Level of Detail (LOD) for dynamic resource loading, two limitations remain. One is loading priority, which does not adequately consider the factors affecting visual effects such as LOD selection and visible area. The other is the insufficient trade-off between rendering quality and loading latency. To this end, we propose a loading prioritization metric called Vision Degree (VD), derived from LOD selection, loading time, and the trade-off between rendering quality and loading latency. During rendering, VDs are sorted in descending order to achieve an optimized loading and unloading sequence. At the same time, a compensation factor is proposed to further compensate for the visual loss caused by the reduced LOD level and to optimize the rendering effect. Finally, we optimize the initial viewpoint selection by minimizing the average model-to-viewpoint distance, thereby reducing the initial scene loading time. Experimental results demonstrate that our method reduces the rendering latency by 24–29% compared with the existing Area-of-Interest (AOI)-based loading strategy, while maintaining comparable visual quality.
ISSN:2073-431X