Approximation Properties of a New Class of Beta-Type Szász–Mirakjan Operators
We use the new variant of Szász–Mirakjan operators to construct a generalized version of Szász-beta type operators and obtain auxiliary lemmas. We present the weighted approximation theorems and, by using Peetre’s K-function, the local approximation results of these operators are studied. We also an...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2025-01-01
|
| Series: | Journal of Mathematics |
| Online Access: | http://dx.doi.org/10.1155/jom/6680828 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We use the new variant of Szász–Mirakjan operators to construct a generalized version of Szász-beta type operators and obtain auxiliary lemmas. We present the weighted approximation theorems and, by using Peetre’s K-function, the local approximation results of these operators are studied. We also analyze the rate of convergence by utilizing Lipschitz-type maximal functions and the ordinary modulus of continuity. Moreover, using aforesaid operators, we finally examine the Voronovskaya-type theorem. |
|---|---|
| ISSN: | 2314-4785 |