A Real-World Energy Management Dataset from a Smart Company Building for Optimization and Machine Learning

Abstract We present a large real-world dataset obtained from monitoring a smart company facility over the course of six years, from 2018 to 2023. The dataset includes energy consumption data from various facility areas and components, energy production data from a photovoltaic system and a combined...

Full description

Saved in:
Bibliographic Details
Main Authors: Jens Engel, Andrea Castellani, Patricia Wollstadt, Felix Lanfermann, Thomas Schmitt, Sebastian Schmitt, Lydia Fischer, Steffen Limmer, David Luttropp, Florian Jomrich, René Unger, Tobias Rodemann
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-05186-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We present a large real-world dataset obtained from monitoring a smart company facility over the course of six years, from 2018 to 2023. The dataset includes energy consumption data from various facility areas and components, energy production data from a photovoltaic system and a combined heat and power plant, operational data from heating and cooling systems, and weather data from an on-site weather station. The measurement sensors installed throughout the facility are organized in a hierarchical metering structure with multiple sub-metering levels, which is reflected in the dataset. The dataset contains measurement data from 72 energy meters, 9 heat meters and a weather station. Both raw and processed data at different processing levels, including labeled issues, is available. In this paper, we describe the data acquisition and post-processing employed to create the dataset. The dataset enables the application of a wide range of methods in the domain of energy management, including optimization, modeling, and machine learning to optimize building operations and reduce costs and carbon emissions.
ISSN:2052-4463