Efficient characterization of N-beam Gaussian fields through photon-number measurements: Quantum universal invariants
Quantum universal invariants of general N-beam Gaussian fields are investigated from the point of view of fields' intensity moments. A method that uniquely links these invariants, including the global and marginal fields' purities, to intensity moments is suggested. Determination of these...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2025-06-01
|
| Series: | Physical Review Research |
| Online Access: | http://doi.org/10.1103/5hnr-6jbf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Quantum universal invariants of general N-beam Gaussian fields are investigated from the point of view of fields' intensity moments. A method that uniquely links these invariants, including the global and marginal fields' purities, to intensity moments is suggested. Determination of these invariants identifies the Gaussian states including their quantum correlations. In particular, the Peres-Horodecki separability criterion is reformulated in terms of quantum universal invariants, and consequently in terms of experimental intensity moments, offering a practical tool for determining the entanglement or separability of these states. The approach is experimentally demonstrated by determining the invariants of noisy symmetric three-beam Gaussian states using photon-number resolved measurements. Furthermore, their entanglement properties are analyzed and characterized. |
|---|---|
| ISSN: | 2643-1564 |