Pose estimation for health data analysis: advancing AI in neuroscience and psychology

IntroductionThe integration of artificial intelligence (AI) with health data analysis offers unprecedented opportunities to advance research in neuroscience and psychology, particularly in extracting meaningful patterns from complex, heterogeneous, and high-dimensional datasets. Traditional methods...

Full description

Saved in:
Bibliographic Details
Main Authors: Juan Yu, Daoyu Zhu
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-08-01
Series:Frontiers in Neurology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fneur.2025.1596408/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849236061570465792
author Juan Yu
Daoyu Zhu
author_facet Juan Yu
Daoyu Zhu
author_sort Juan Yu
collection DOAJ
description IntroductionThe integration of artificial intelligence (AI) with health data analysis offers unprecedented opportunities to advance research in neuroscience and psychology, particularly in extracting meaningful patterns from complex, heterogeneous, and high-dimensional datasets. Traditional methods often struggle with the dynamic and multi-modal nature of health data, which includes electronic health records, wearable sensor data, and imaging modalities. These methods face challenges in scalability, interpretability, and their ability to incorporate domain-specific knowledge into analytical pipelines, limiting their utility in practical applications.MethodsTo address these gaps, we propose a novel approach combining the Dynamic Medical Graph Framework (DMGF) and the Attention-Guided Optimization Strategy (AGOS). DMGF leverages graph-based representations to capture the temporal and structural relationships within health datasets, enabling robust modeling of disease progression and patient interactions. The framework integrates multi-modal data sources and applies temporal graph convolutional networks, ensuring both scalability and adaptability to diverse tasks. AGOS complements this by embedding domain-specific constraints and employing attention mechanisms to prioritize critical features, ensuring clinically interpretable and ethically aligned decisions.Results and discussionTogether, these innovations provide a unified, scalable, and interpretable pipeline for tasks such as disease prediction, treatment optimization, and public health monitoring. Empirical evaluations demonstrate superior performance over existing methods, with enhanced interpretability and alignment with clinical principles. This work represents a step forward in leveraging AI to address the complexities of health data in neuroscience and psychology, advancing both research and clinical applications.
format Article
id doaj-art-236e57997cba4deeabb2f59fc41cba16
institution Kabale University
issn 1664-2295
language English
publishDate 2025-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neurology
spelling doaj-art-236e57997cba4deeabb2f59fc41cba162025-08-20T04:02:28ZengFrontiers Media S.A.Frontiers in Neurology1664-22952025-08-011610.3389/fneur.2025.15964081596408Pose estimation for health data analysis: advancing AI in neuroscience and psychologyJuan Yu0Daoyu Zhu1Hubei Teacher Education Research Center, Hubei University of Education, Wuhan, Hubei, ChinaCollege of Physical Education, Xinyang Normal University, Xinyang, Henan, ChinaIntroductionThe integration of artificial intelligence (AI) with health data analysis offers unprecedented opportunities to advance research in neuroscience and psychology, particularly in extracting meaningful patterns from complex, heterogeneous, and high-dimensional datasets. Traditional methods often struggle with the dynamic and multi-modal nature of health data, which includes electronic health records, wearable sensor data, and imaging modalities. These methods face challenges in scalability, interpretability, and their ability to incorporate domain-specific knowledge into analytical pipelines, limiting their utility in practical applications.MethodsTo address these gaps, we propose a novel approach combining the Dynamic Medical Graph Framework (DMGF) and the Attention-Guided Optimization Strategy (AGOS). DMGF leverages graph-based representations to capture the temporal and structural relationships within health datasets, enabling robust modeling of disease progression and patient interactions. The framework integrates multi-modal data sources and applies temporal graph convolutional networks, ensuring both scalability and adaptability to diverse tasks. AGOS complements this by embedding domain-specific constraints and employing attention mechanisms to prioritize critical features, ensuring clinically interpretable and ethically aligned decisions.Results and discussionTogether, these innovations provide a unified, scalable, and interpretable pipeline for tasks such as disease prediction, treatment optimization, and public health monitoring. Empirical evaluations demonstrate superior performance over existing methods, with enhanced interpretability and alignment with clinical principles. This work represents a step forward in leveraging AI to address the complexities of health data in neuroscience and psychology, advancing both research and clinical applications.https://www.frontiersin.org/articles/10.3389/fneur.2025.1596408/fullhealth data analysisdynamic medical graph frameworkattention-guided optimizationartificial intelligenceneuroscience and psychology
spellingShingle Juan Yu
Daoyu Zhu
Pose estimation for health data analysis: advancing AI in neuroscience and psychology
Frontiers in Neurology
health data analysis
dynamic medical graph framework
attention-guided optimization
artificial intelligence
neuroscience and psychology
title Pose estimation for health data analysis: advancing AI in neuroscience and psychology
title_full Pose estimation for health data analysis: advancing AI in neuroscience and psychology
title_fullStr Pose estimation for health data analysis: advancing AI in neuroscience and psychology
title_full_unstemmed Pose estimation for health data analysis: advancing AI in neuroscience and psychology
title_short Pose estimation for health data analysis: advancing AI in neuroscience and psychology
title_sort pose estimation for health data analysis advancing ai in neuroscience and psychology
topic health data analysis
dynamic medical graph framework
attention-guided optimization
artificial intelligence
neuroscience and psychology
url https://www.frontiersin.org/articles/10.3389/fneur.2025.1596408/full
work_keys_str_mv AT juanyu poseestimationforhealthdataanalysisadvancingaiinneuroscienceandpsychology
AT daoyuzhu poseestimationforhealthdataanalysisadvancingaiinneuroscienceandpsychology