The Nordic-walking mechanism and its explanation of deconfined pseudocriticality from Wess-Zumino-Witten theory

Abstract The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered...

Full description

Saved in:
Bibliographic Details
Main Authors: Bilal Hawashin, Astrid Eichhorn, Lukas Janssen, Michael M. Scherer, Shouryya Ray
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-54884-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered quantum magnets, such as pressurised SrCu2(BO3)2. Experiments find a weak first-order transition, which simulations of relevant microscopic models can reproduce. The origin of this behaviour has been a matter of considerable debate for several years. In this work, we demonstrate that the nature of the deconfined quantum critical point can be best understood in terms of a novel dynamical mechanism, termed Nordic walking. Nordic walking denotes a renormalisation group flow arising from a beta function that is flat over a range of couplings. This gives rise to a logarithmic flow that is faster than the well-known walking behaviour, associated with the annihilation and complexification of fixed points, but still significantly slower than the generic running of couplings. The Nordic-walking mechanism can thus explain weak first-order transitions, but may also play a role in high-energy physics, where it could solve hierarchy problems. We analyse the Wess-Zumino-Witten field theory pertinent to deconfined quantum critical points with a topological term in 2+1 dimensions. To this end, we construct an advanced functional renormalisation group approach based on higher-order regulators. We thereby calculate the beta function directly in 2+1 dimensions and provide evidence for Nordic walking.
ISSN:2041-1723