Enhancing Indian summer monsoon prediction: Deep learning approach for skillful long-lead forecasts of rainfall

The prediction of the Indian summer monsoon rainfall (ISMR) in the June–September (JJAS) season at long-lead times is challenging. The state-of-the-art dynamical models often fail to capture the sign and amplitude of the rainfall anomalies in the extreme rainfall seasons, limiting the overall skill...

Full description

Saved in:
Bibliographic Details
Main Authors: Kalpesh R. Patil, Takeshi Doi, J.V. Ratnam, Swadhin K. Behera
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Applied Computing and Geosciences
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590197425000394
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The prediction of the Indian summer monsoon rainfall (ISMR) in the June–September (JJAS) season at long-lead times is challenging. The state-of-the-art dynamical models often fail to capture the sign and amplitude of the rainfall anomalies in the extreme rainfall seasons, limiting the overall skill of the models. We attempted to address this issue using a deep learning model based on convolutional neural networks (CNN). An ensemble of JJAS rainfall predictions using the CNN model with a unique custom function showed high skills in predicting ISMR at a long-lead time of 12 months. The predictions had an anomaly correlation coefficient (ACC) exceeding 0.5 at all the lead times from 2 to 17 months. The CNN model predictions could capture the sign and phase of the extreme rainfall events in the study period realistically. Analysis of saliency-based heatmaps indicated the high skill to be due to the model capturing the leading modes of climate variability, such as the Indian Ocean Dipole and El Niño-Southern Oscillation, realistically. The ensemble of CNN ISMR predictions can supplement the predictions of the forecasting centers.
ISSN:2590-1974