Commitment Schemes from OWFs with Applications to Quantum Oblivious Transfer

Commitment schemes (CSs) are essential to many cryptographic protocols and schemes with applications that include privacy-preserving computation on data, privacy-preserving authentication, and, in particular, oblivious transfer protocols. For quantum oblivious transfer (qOT) protocols, unconditional...

Full description

Saved in:
Bibliographic Details
Main Authors: Thomas Lorünser, Sebastian Ramacher, Federico Valbusa
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/7/751
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Commitment schemes (CSs) are essential to many cryptographic protocols and schemes with applications that include privacy-preserving computation on data, privacy-preserving authentication, and, in particular, oblivious transfer protocols. For quantum oblivious transfer (qOT) protocols, unconditionally binding commitment schemes that do not rely on hardness assumptions from structured mathematical problems are required. These additional constraints severely limit the choice of commitment schemes to random oracle-based constructions or Naor’s bit commitment scheme. As these protocols commit to individual bits, the use of such commitment schemes comes at a high bandwidth and computational cost. In this work, we investigate improvements to the efficiency of commitment schemes used in qOT protocols and propose an extension of Naor’s commitment scheme requiring the existence of one-way functions (OWFs) to reduce communication complexity for 2-bit strings. Additionally, we provide an interactive string commitment scheme with preprocessing to enable the fast and efficient computation of commitments.
ISSN:1099-4300