Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant Blocks

We first give the block style spectral decomposition of arbitrary block skew circulant matrix with skew circulant blocks. Secondly, we obtain the singular value of block skew circulant matrix with skew circulant blocks as well. Finally, based on the block style spectral decomposition, we deal with t...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaolin Jiang, Juan Li, Jianwei Zhou
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/523102
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554139107721216
author Zhaolin Jiang
Juan Li
Jianwei Zhou
author_facet Zhaolin Jiang
Juan Li
Jianwei Zhou
author_sort Zhaolin Jiang
collection DOAJ
description We first give the block style spectral decomposition of arbitrary block skew circulant matrix with skew circulant blocks. Secondly, we obtain the singular value of block skew circulant matrix with skew circulant blocks as well. Finally, based on the block style spectral decomposition, we deal with the optimal backward perturbation analysis for the block skew circulant linear system with skew circulant blocks.
format Article
id doaj-art-23220dd517b342839d19948e66b08aa5
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-23220dd517b342839d19948e66b08aa52025-02-03T05:52:16ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/523102523102Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant BlocksZhaolin Jiang0Juan Li1Jianwei Zhou2Department of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaWe first give the block style spectral decomposition of arbitrary block skew circulant matrix with skew circulant blocks. Secondly, we obtain the singular value of block skew circulant matrix with skew circulant blocks as well. Finally, based on the block style spectral decomposition, we deal with the optimal backward perturbation analysis for the block skew circulant linear system with skew circulant blocks.http://dx.doi.org/10.1155/2014/523102
spellingShingle Zhaolin Jiang
Juan Li
Jianwei Zhou
Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant Blocks
Abstract and Applied Analysis
title Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant Blocks
title_full Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant Blocks
title_fullStr Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant Blocks
title_full_unstemmed Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant Blocks
title_short Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant Blocks
title_sort optimal backward perturbation analysis for the block skew circulant linear systems with skew circulant blocks
url http://dx.doi.org/10.1155/2014/523102
work_keys_str_mv AT zhaolinjiang optimalbackwardperturbationanalysisfortheblockskewcirculantlinearsystemswithskewcirculantblocks
AT juanli optimalbackwardperturbationanalysisfortheblockskewcirculantlinearsystemswithskewcirculantblocks
AT jianweizhou optimalbackwardperturbationanalysisfortheblockskewcirculantlinearsystemswithskewcirculantblocks