FCN attention enhancing asphalt pavement crack detection through attention mechanisms and fully convolutional networks
Abstract This paper presents an innovative approach to detecting cracks in asphalt pavement using an FCN-attention model, which integrates attention mechanisms into a fully convolutional network (FCN) for enhanced pixel-level segmentation. The model employs a ResNet-50-based encoder and incorporates...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-92971-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract This paper presents an innovative approach to detecting cracks in asphalt pavement using an FCN-attention model, which integrates attention mechanisms into a fully convolutional network (FCN) for enhanced pixel-level segmentation. The model employs a ResNet-50-based encoder and incorporates channel-wise and spatial attention modules to refine feature extraction and focus on the most relevant image regions. The results demonstrate that the FCN-attention model outperforms traditional models such as VGG-16, AlexNet, MobileNet, and GoogleNet across multiple evaluation metrics. Specifically, the FCN-attention model achieves a global accuracy rate of 90.79%, with a precision of 92.3%, recall of 89.5%, and an F1-score of 90.9%. Additionally, the model achieves an average intersection-over-union (IoU) ratio of 69.7% and a test duration of 109.1 ms per image. The proposed method also excels in crack length and width calculation, providing real-world dimensions for the detected cracks. The model’s effectiveness is further validated through an ablation study, which highlights the significant impact of the attention mechanism on model performance. |
|---|---|
| ISSN: | 2045-2322 |