Enhancement of Nitrogen Retention in Cow Manure Composting with Biochar: An Investigation into Migration and Regulation Mechanisms
Context: Biochar can affect the storage and forms of nitrogen; thus, it may also play a role in altering the nitrogen cycle during the fermentation process of cow dung into organic fertilizer. Objective: To elucidate the mechanism and process of nitrogen transformation during the composting of cow m...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Agronomy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4395/15/2/265 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Context: Biochar can affect the storage and forms of nitrogen; thus, it may also play a role in altering the nitrogen cycle during the fermentation process of cow dung into organic fertilizer. Objective: To elucidate the mechanism and process of nitrogen transformation during the composting of cow manure with biochar, a comparative experiment was conducted. Method: This study investigates the use of biochar as a medium to enhance nitrogen storage during the aerobic composting of cow manure. The effectiveness was verified through a rapid composting experiment. Result and Conclusions: The results demonstrated that adding 5% biochar to the compost pile increased the total nitrogen content in manure by 12%. Specifically, the pyrrolic nitrogen in the composted cow manure increased from 38% to 44%, and the carbon-nitrogen ratio improved from 35% to 37%. Analysis of surface functional groups indicated that the C=O and C=C bonds in biochar played a key role in modifying nitrogen storage. Microbial analysis showed that biochar could significantly enhance the regional competitiveness of microorganisms, such as <i>Cellvibrio</i>, thereby boosting the expression of functional genes involved in the nitrification process, including <i>amoABC</i>, hao, and <i>nxrAB</i>. Therefore, adding 5% biochar not only enhances nitrogen storage in organic fertilizer but also changes the microbial population structure. Significance: This study carries substantial implications for the application of Biochar in the field, as well as for the development of microbial fertilizers based on cow manure. |
|---|---|
| ISSN: | 2073-4395 |