An Enhanced Integrated Optimization Strategy for Wide ZVS Operation and Reduced Current Stress Across the Full Load Range in DAB Converters

The dual-active-bridge (DAB) converter has emerged as a promising topology for renewable energy applications and microgrid systems due to its high power density and bidirectional energy-transfer capability. Enhancing the overall efficiency and reliability of DAB converters requires the simultaneous...

Full description

Saved in:
Bibliographic Details
Main Authors: Longfei Cui, Yiming Zhang, Xuhong Wang, Dong Zhang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7413
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dual-active-bridge (DAB) converter has emerged as a promising topology for renewable energy applications and microgrid systems due to its high power density and bidirectional energy-transfer capability. Enhancing the overall efficiency and reliability of DAB converters requires the simultaneous realization of zero-voltage switching (ZVS) across all switches and the minimization of current stress over wide load and voltage ranges—two objectives that are often in conflict. Conventional modulation strategies with limited degrees of freedom fail to meet these dual goals effectively. To address this challenge, this paper introduces an enhanced integrated optimization strategy based on triple phase shift (EIOS-TPS). This approach formulates the power transmission requirement as an equality constraint and incorporates ZVS and mode boundary conditions as inequalities, resulting in a comprehensive optimization framework. Optimal phase-shift parameters are obtained using the Karush–Kuhn–Tucker (KKT) conditions. To mitigate zero-current switching (ZCS) under a light load and achieve full-range ZVS with reduced current stress, a modulation factor λ is introduced, enabling a globally optimized control trajectory. An experimental 1176 W prototype is developed to validate the proposed method, which achieves full-range ZVS while maintaining low current stress. In the low-power region, it improves efficiency by up to 2.2% in buck mode and 2.0% in boost mode compared with traditional control strategies, reaching a peak efficiency of 96.5%.
ISSN:2076-3417