Episodic rhythmicity is generated by a distributed neural network in the developing mammalian spinal cord
Summary: Spinal circuits generate locomotor rhythms, but the mechanisms behind episodic locomotor behaviors remain unclear. This study investigated dopamine-induced episodic rhythms in isolated neonatal mouse spinal cords to understand these mechanisms. The episodic rhythms were generally synchronou...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-03-01
|
| Series: | iScience |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004225002317 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Spinal circuits generate locomotor rhythms, but the mechanisms behind episodic locomotor behaviors remain unclear. This study investigated dopamine-induced episodic rhythms in isolated neonatal mouse spinal cords to understand these mechanisms. The episodic rhythms were generally synchronous and propagated rostro-caudally, although occasional asynchrony was observed. Electrical stimulation of the L5 dorsal root entrained the episodic rhythms, suggesting afferent control and a distributed network. Even after transection or ventrolateral funiculus (VLF) lesions, episodic activity persisted in isolated thoracic or sacral segments, implying VLF-coupled networks. Rhythmicity was observed in VLF and dorsal root axons and was independent of cholinergic excitation via motoneurons, GABAA receptors, or dorsal inhibitory circuits. These findings suggest a flexibly coupled, distributed spinal interneuron network underlies episodic rhythmicity, providing a foundation for future investigations into how spinal circuits are modulated to produce diverse motor outputs. |
|---|---|
| ISSN: | 2589-0042 |