Advanced Sustainable Architectural Acoustics Through Robotic Extrusion-Based Additive Manufacturing (EAM) of Fungal Biomaterials

While prior studies have explored developing mycelium paste for EAM of this material, this research streamlined the EAM workflow for preparing living, extrudable mycelium mixtures, involving alterations in the preparation sequence and adjustments in the admixture ratios. The resultant mycelium mixtu...

Full description

Saved in:
Bibliographic Details
Main Authors: Alale Mohseni, Özgüç Bertuğ Çapunaman, Alireza Zamani, Natalie Walter, Benay Gürsoy
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/10/5587
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While prior studies have explored developing mycelium paste for EAM of this material, this research streamlined the EAM workflow for preparing living, extrudable mycelium mixtures, involving alterations in the preparation sequence and adjustments in the admixture ratios. The resultant mycelium mixture was employed in a series of experiments to optimize the parameters of robotic EAM using Artificial Neural Networks. Next, a performance-based acoustic wall was designed informed by simulation in Pachyderm. Building upon previous research by authors, two adjacent panels with high complex geometric features were selected for fabrication, presenting a challenging test scenario, as conventional planar slicing introduces stair-stepping phenomena, while non-planar slicing introduces irregularities in layer height. To address these, a hybrid slicing strategy was used by integrating both slicing techniques. Next, an experimental framework was established to assess the influence of EAM toolpath planning factors on the acoustic properties of the designed acoustic panels. Lastly, two panels were fabricated using an ABB IRB 2400 robotic arm. The alignment of the toolpath planning factors and EAM parameters resulted in a uniform material deposition in the final fabricated panels. This study underscores the transformative capacity of robotic EAM and conformal toolpath planning, presenting the development of biodegradable building materials and advanced acoustic solutions.
ISSN:2076-3417