Inhibition of miMOMP-induced SASP to combat age-related disease
Cellular senescence, first described in 1961, was initially observed in normal human fibroblasts that ceased proliferating after a finite number of divisions in culture. This process is triggered by various stimuli, including oxidative stress, chromatin modifications and oncogene activation, charact...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2025-01-01
|
Series: | Frontiers in Aging |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fragi.2025.1505063/full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cellular senescence, first described in 1961, was initially observed in normal human fibroblasts that ceased proliferating after a finite number of divisions in culture. This process is triggered by various stimuli, including oxidative stress, chromatin modifications and oncogene activation, characterized by irreversible cell-cycle arrest, resistance to apoptosis and the induction of a complex senescent associated secretory phenotype (SASP). Over the past decade, emerging evidence has linked cellular senescence to the aging process and a wide range of chronic age-related diseases. Consequently, research focused on targeting senescence to alleviate or delay age-related disease, referred to as senotherapy, has been conducted rapidly. Therefore, elucidating the mechanisms of cellular senescence is essential for providing practical strategies aimed at addressing this condition. |
---|---|
ISSN: | 2673-6217 |