Oscillation Criteria Based on a New Weighted Function for Linear Matrix Hamiltonian Systems
By employing a generalized Riccati technique and an integral averaging technique, some new oscillation criteria are established for the second-order matrix differential system U′=A(x)U+B(t)V, V′=C(x)U−A∗(t)V, where A(t), B(t), and C(t) are (n×n)-matrices, and B, C are Hermitian. These results are sh...
Saved in:
| Main Authors: | Yingxin Guo, Junchang Wang |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2011-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2011/659503 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
Similar Items
-
New Interval Oscillation Criteria for Certain Linear Hamiltonian Systems
by: Jing Shao, et al.
Published: (2013-01-01) -
Some Oscillation Results for Linear Hamiltonian Systems
by: Nan Wang, et al.
Published: (2012-01-01) -
Oscillation criteria for perturbed half-linear differential equations
by: Manabu Naito
Published: (2024-07-01) -
Interval Oscillation Criteria for Super-Half-Linear Impulsive Differential Equations with Delay
by: Zhonghai Guo, et al.
Published: (2012-01-01) -
Dynamic properties of large amplitude nonlinear oscillations using Hamiltonian-based frequency formulation
by: Kang-Jia Wang
Published: (2024-04-01)