New Caffeic Acid Phenylethyl Ester Analogs Bearing Substituted Triazole: Synthesis and Structure-Activity Relationship Study towards 5-Lipoxygenase Inhibition
Leukotrienes are biosynthesized by the conversion of arachidonic acid by 5-Lipoxygenase and play a key role in many inflammatory disorders. Inspired by caffeic acid phenylethyl ester (CAPE) (2) and an analog carrying a triazole substituted by cinnamoyl and 5-LO inhibitors recently reported by our te...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2017-01-01
|
| Series: | Journal of Chemistry |
| Online Access: | http://dx.doi.org/10.1155/2017/2380531 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Leukotrienes are biosynthesized by the conversion of arachidonic acid by 5-Lipoxygenase and play a key role in many inflammatory disorders. Inspired by caffeic acid phenylethyl ester (CAPE) (2) and an analog carrying a triazole substituted by cinnamoyl and 5-LO inhibitors recently reported by our team, sixteen new CAPE analogs bearing substituted triazole were synthesized by copper catalyzed Huisgen 1,3-dipolar cycloaddition. Compound 10e, an analog bearing p-CF3 phenethyl substituted triazole, was equivalent to CAPE (2) but clearly surpassed Zileuton (2), the only approved 5-LO inhibitor. Substitution of the phenethyl moiety by cyclohexylethyl, as with 12g, clearly increased 5-LO inhibition which confirms the importance of hydrophobic interactions. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds as leukotrienes biosynthesis inhibitors. |
|---|---|
| ISSN: | 2090-9063 2090-9071 |