On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators
In this note, we show that the $\Omega \in L\log L$ hypothesis is the strongest size condition on a function $\Omega $ on the unit sphere with mean value zero, which ensures that the corresponding singular integral $T_\Omega $ defined by \[ T_{\Omega }f(x)=p.v.\int \frac{1}{|x-y|^d}\Omega \Bigl (\fr...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.633/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206137786466304 |
---|---|
author | Bhojak, Ankit |
author_facet | Bhojak, Ankit |
author_sort | Bhojak, Ankit |
collection | DOAJ |
description | In this note, we show that the $\Omega \in L\log L$ hypothesis is the strongest size condition on a function $\Omega $ on the unit sphere with mean value zero, which ensures that the corresponding singular integral $T_\Omega $ defined by
\[ T_{\Omega }f(x)=p.v.\int \frac{1}{|x-y|^d}\Omega \Bigl (\frac{x-y}{|x-y|}\Big )f(y)\, \mathrm{d} y,\]
maps $L^1(\mathbb{R}^d)$ to weak $L^1(\mathbb{R}^d)$, provided $T_\Omega $ is bounded in $L^2(\mathbb{R}^d)$. |
format | Article |
id | doaj-art-21f1d72b979e4036ae369ccfd64e3dd3 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-21f1d72b979e4036ae369ccfd64e3dd32025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101205121310.5802/crmath.63310.5802/crmath.633On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operatorsBhojak, Ankit0Department of Mathematics, Indian Institute of Science Education and Research Bhopal, Bhopal-462066, India.In this note, we show that the $\Omega \in L\log L$ hypothesis is the strongest size condition on a function $\Omega $ on the unit sphere with mean value zero, which ensures that the corresponding singular integral $T_\Omega $ defined by \[ T_{\Omega }f(x)=p.v.\int \frac{1}{|x-y|^d}\Omega \Bigl (\frac{x-y}{|x-y|}\Big )f(y)\, \mathrm{d} y,\] maps $L^1(\mathbb{R}^d)$ to weak $L^1(\mathbb{R}^d)$, provided $T_\Omega $ is bounded in $L^2(\mathbb{R}^d)$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.633/Singular IntegralsOrlicz spaces |
spellingShingle | Bhojak, Ankit On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators Comptes Rendus. Mathématique Singular Integrals Orlicz spaces |
title | On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators |
title_full | On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators |
title_fullStr | On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators |
title_full_unstemmed | On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators |
title_short | On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators |
title_sort | on sharpness of l log l criterion for weak type 1 1 boundedness of rough operators |
topic | Singular Integrals Orlicz spaces |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.633/ |
work_keys_str_mv | AT bhojakankit onsharpnessoflloglcriterionforweaktype11boundednessofroughoperators |