Long-Range Dependence in Word Time Series: The Cosine Correlation of Embeddings
We analyze long-range dependence (LRD) for word time series, understood as a slower than exponential decay of the two-point Shannon mutual information. We achieve this by examining the decay of the cosine correlation, a proxy object defined in terms of the cosine similarity between word2vec embeddin...
Saved in:
| Main Authors: | Paweł Wieczyński, Łukasz Dębowski |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/6/613 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Analisis Perbandingan Teknik Word2vec dan Doc2vec dalam Mengukur Kemiripan Dokumen Menggunakan Cosine Similarity
by: Dede Iskandar, et al.
Published: (2025-02-01) -
Evaluasi Pengukuran Semantik Sinonim KBBI Menggunakan Pendekatan Word Embedding
by: Muhammad Rafli Aditya H., et al.
Published: (2025-05-01) -
Automated Classification of Exchange Information Requirements for Construction Projects Using Word2Vec and SVM
by: Ewelina Mitera-Kiełbasa, et al.
Published: (2024-10-01) -
Word-embedding Based Text Vectorization Using Clustering
by: Vitaly I. Yuferev, et al.
Published: (2021-10-01) -
Aplikasi Ruang Tugas Dengan Deteksi Kemiripan Teks Pada Dokumen Tugas Menggunakan Cosine Similarity
by: Tazkia Aulia Prismadana
Published: (2023-10-01)