From Tweets to Threats: A Survey of Cybersecurity Threat Detection Challenges, AI-Based Solutions and Potential Opportunities in X

The pervasive use of social media platforms, such as X (formerly Twitter), has become a part of our daily lives, simultaneously increasing the threat of cyber attacks. To address this risk, numerous studies have explored methods to detect and predict cyber attacks by analyzing X data. This study spe...

Full description

Saved in:
Bibliographic Details
Main Authors: Omar Alsodi, Xujuan Zhou, Raj Gururajan, Anup Shrestha, Eyad Btoush
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/7/3898
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pervasive use of social media platforms, such as X (formerly Twitter), has become a part of our daily lives, simultaneously increasing the threat of cyber attacks. To address this risk, numerous studies have explored methods to detect and predict cyber attacks by analyzing X data. This study specifically examines the application of AI techniques for predicting potential cyber threats on X. DeepNN consistently outperforms competing methods in terms of overall and average figure of merit. While character-level feature extraction methods are abundant, we contend that a semantic focus is more beneficial for this stage of the process. The findings indicate that current studies often lack comprehensive evaluations of critical aspects such as prediction scope, types of cybersecurity threats, feature extraction techniques, algorithm complexity, information summarization levels, scalability over time, and performance measurements. This review primarily focuses on identifying AI methods used to detect cyber threats on X and investigates existing gaps and trends in this area. Notably, over the past few years, limited review articles have been published on detecting cyber threats on X, especially those concentrating on recent journal articles rather than conference papers.
ISSN:2076-3417