Dynamics of the Traveling Wave Solutions of Fractional Date–Jimbo–Kashiwara–Miwa Equation via Riccati–Bernoulli Sub-ODE Method through Bäcklund Transformation

The dynamical wave solutions of the time–space fractional Date–Jimbo–Kashiwara–Miwa (DJKM) equation have been obtained in this article using an innovative and efficient technique including the Riccati–Bernoulli sub-ODE method through Bäcklund transformation. Fractional-order derivatives enter into p...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Mossa Al-Sawalha, Saima Noor, Mohammad Alqudah, Musaad S. Aldhabani, Roman Ullah
Format: Article
Language:English
Published: MDPI AG 2024-08-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/9/497
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850261379932487680
author M. Mossa Al-Sawalha
Saima Noor
Mohammad Alqudah
Musaad S. Aldhabani
Roman Ullah
author_facet M. Mossa Al-Sawalha
Saima Noor
Mohammad Alqudah
Musaad S. Aldhabani
Roman Ullah
author_sort M. Mossa Al-Sawalha
collection DOAJ
description The dynamical wave solutions of the time–space fractional Date–Jimbo–Kashiwara–Miwa (DJKM) equation have been obtained in this article using an innovative and efficient technique including the Riccati–Bernoulli sub-ODE method through Bäcklund transformation. Fractional-order derivatives enter into play for their novel contribution to the enhancement of the characterization of dynamic waves while providing better modeling ability compared to integer types of derivatives. The solutions of the above-mentioned time–space fractional Date–Jimbo–Kashiwara–Miwa equation have tremendous importance in numerous scientific scenarios. The regular dynamical wave solutions of the aforementioned equation encompass three fundamental functions: trigonometric, hyperbolic, and rational functions will be among the topics covered. These solutions are graphically classified into three categories: compacton kink solitary wave solutions, kink soliton wave solutions and anti-kink soliton wave solutions. In addition, to explore the impact of the fractional parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>) on those solutions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>D</mi></mrow></semantics></math></inline-formula> plots are utilized, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>D</mi></mrow></semantics></math></inline-formula> plots are applied to present the solutions involving the integer-order derivatives.
format Article
id doaj-art-219f1eb646e247fcaef60eb47b298ff6
institution OA Journals
issn 2504-3110
language English
publishDate 2024-08-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-219f1eb646e247fcaef60eb47b298ff62025-08-20T01:55:27ZengMDPI AGFractal and Fractional2504-31102024-08-018949710.3390/fractalfract8090497Dynamics of the Traveling Wave Solutions of Fractional Date–Jimbo–Kashiwara–Miwa Equation via Riccati–Bernoulli Sub-ODE Method through Bäcklund TransformationM. Mossa Al-Sawalha0Saima Noor1Mohammad Alqudah2Musaad S. Aldhabani3Roman Ullah4Department of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi ArabiaDepartment of Basic Sciences, General Administration of Preparatory Year, King Faisal University, P.O. Box 400, Al Ahsa 31982, Saudi ArabiaDepartment of Basic Sciences, School of Electrical Engineering & Information Technology, German Jordanian University, Amman 11180, JordanDepartment of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi ArabiaDepartment of General Studies, Higher Colleges of Technology, Dubai Women Campus, Dubai 16062, United Arab EmiratesThe dynamical wave solutions of the time–space fractional Date–Jimbo–Kashiwara–Miwa (DJKM) equation have been obtained in this article using an innovative and efficient technique including the Riccati–Bernoulli sub-ODE method through Bäcklund transformation. Fractional-order derivatives enter into play for their novel contribution to the enhancement of the characterization of dynamic waves while providing better modeling ability compared to integer types of derivatives. The solutions of the above-mentioned time–space fractional Date–Jimbo–Kashiwara–Miwa equation have tremendous importance in numerous scientific scenarios. The regular dynamical wave solutions of the aforementioned equation encompass three fundamental functions: trigonometric, hyperbolic, and rational functions will be among the topics covered. These solutions are graphically classified into three categories: compacton kink solitary wave solutions, kink soliton wave solutions and anti-kink soliton wave solutions. In addition, to explore the impact of the fractional parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>) on those solutions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>D</mi></mrow></semantics></math></inline-formula> plots are utilized, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>D</mi></mrow></semantics></math></inline-formula> plots are applied to present the solutions involving the integer-order derivatives.https://www.mdpi.com/2504-3110/8/9/497fractional Date–Jimbo–Kashiwara–Miwa (DJKM) equationBäcklund transformationnonlinear differential equationsexact solutions
spellingShingle M. Mossa Al-Sawalha
Saima Noor
Mohammad Alqudah
Musaad S. Aldhabani
Roman Ullah
Dynamics of the Traveling Wave Solutions of Fractional Date–Jimbo–Kashiwara–Miwa Equation via Riccati–Bernoulli Sub-ODE Method through Bäcklund Transformation
Fractal and Fractional
fractional Date–Jimbo–Kashiwara–Miwa (DJKM) equation
Bäcklund transformation
nonlinear differential equations
exact solutions
title Dynamics of the Traveling Wave Solutions of Fractional Date–Jimbo–Kashiwara–Miwa Equation via Riccati–Bernoulli Sub-ODE Method through Bäcklund Transformation
title_full Dynamics of the Traveling Wave Solutions of Fractional Date–Jimbo–Kashiwara–Miwa Equation via Riccati–Bernoulli Sub-ODE Method through Bäcklund Transformation
title_fullStr Dynamics of the Traveling Wave Solutions of Fractional Date–Jimbo–Kashiwara–Miwa Equation via Riccati–Bernoulli Sub-ODE Method through Bäcklund Transformation
title_full_unstemmed Dynamics of the Traveling Wave Solutions of Fractional Date–Jimbo–Kashiwara–Miwa Equation via Riccati–Bernoulli Sub-ODE Method through Bäcklund Transformation
title_short Dynamics of the Traveling Wave Solutions of Fractional Date–Jimbo–Kashiwara–Miwa Equation via Riccati–Bernoulli Sub-ODE Method through Bäcklund Transformation
title_sort dynamics of the traveling wave solutions of fractional date jimbo kashiwara miwa equation via riccati bernoulli sub ode method through backlund transformation
topic fractional Date–Jimbo–Kashiwara–Miwa (DJKM) equation
Bäcklund transformation
nonlinear differential equations
exact solutions
url https://www.mdpi.com/2504-3110/8/9/497
work_keys_str_mv AT mmossaalsawalha dynamicsofthetravelingwavesolutionsoffractionaldatejimbokashiwaramiwaequationviariccatibernoullisubodemethodthroughbacklundtransformation
AT saimanoor dynamicsofthetravelingwavesolutionsoffractionaldatejimbokashiwaramiwaequationviariccatibernoullisubodemethodthroughbacklundtransformation
AT mohammadalqudah dynamicsofthetravelingwavesolutionsoffractionaldatejimbokashiwaramiwaequationviariccatibernoullisubodemethodthroughbacklundtransformation
AT musaadsaldhabani dynamicsofthetravelingwavesolutionsoffractionaldatejimbokashiwaramiwaequationviariccatibernoullisubodemethodthroughbacklundtransformation
AT romanullah dynamicsofthetravelingwavesolutionsoffractionaldatejimbokashiwaramiwaequationviariccatibernoullisubodemethodthroughbacklundtransformation