Inter-Turn Fault Diagnosis of Induction Motors Based on Current Vector Pattern Analysis in Stationary Coordinate Frame

In this study, a current vector pattern is analyzed for inter-turn fault (ITF) diagnosis of induction machines (IMs), and an ITF diagnosis algorithm is proposed. When an ITF occurs in IMs, a negative-sequence current is generated due to fault resistance, even though a positive-sequence voltage is ap...

Full description

Saved in:
Bibliographic Details
Main Authors: Inyeol Yun, Hyunwoo Kim, Ju Lee, Sung-Gu Lee
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8414
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a current vector pattern is analyzed for inter-turn fault (ITF) diagnosis of induction machines (IMs), and an ITF diagnosis algorithm is proposed. When an ITF occurs in IMs, a negative-sequence current is generated due to fault resistance, even though a positive-sequence voltage is applied to IMs. Based on the mathematical model of IMs with an ITF, the current vector patterns in the stationary coordinate frame are analyzed. The superposition of positive- and negative-sequence components results in an elliptical current vector trajectory, and its orientation varies depending on the fault conditions. The co-simulation using finite element analysis and circuit simulation is implemented to analyze the current vector pattern of IMs with an ITF. The ITF diagnosis is proposed based on the current vector pattern. A 12 kW, four-pole, three-phase IM and terminal box, which was used to implement an ITF, is manufactured, and an experiment setup is established to verify the ITF algorithm. The effectiveness of the proposed ITF algorithm is validated through experimental verification of the manufactured IM and terminal box.
ISSN:2076-3417