Developing Common Set of Weights with Considering Nondiscretionary Inputs and Using Ideal Point Method
Data envelopment analysis (DEA) is used to evaluate the performance of decision making units (DMUs) with multiple inputs and outputs in a homogeneous group. In this way, the acquired relative efficiency score for each decision making unit lies between zero and one where a number of them may have an...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2013/906743 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Data envelopment analysis (DEA) is used to evaluate the performance of decision making units (DMUs) with multiple inputs and outputs in a homogeneous group. In this way, the acquired relative efficiency score for each decision making unit lies between zero and one where a number of them may have an equal efficiency score of one. DEA successfully divides them into two categories of efficient DMUs and inefficient DMUs. A ranking for inefficient DMUs is given but DEA does not provide further information about the efficient DMUs. One of the popular methods for evaluating and ranking DMUs is the common set of weights (CSW) method. We generate a CSW model with considering nondiscretionary inputs that are beyond the control of DMUs and using ideal point method. The main idea of this approach is to minimize the distance between the evaluated decision making unit and the ideal decision making unit (ideal point). Using an empirical example we put our proposed model to test by applying it to the data of some 20 bank branches and rank their efficient units. |
|---|---|
| ISSN: | 1110-757X 1687-0042 |