Mechanical Properties of Polyethylene-Carbon Nanotube Composites Synthesized by In Situ Polymerization Using Metallocene Catalysts

The influence of multiwalled carbon nanotubes (MWCNTs) on the properties of polyethylene prepared by in situ polymerization using metallocene catalyst (Cp2ZrCl2) in combination with methylaluminoxane has been studied. The MWCNT was incorporated in the polymer matrix adopting a stirring method. Incor...

Full description

Saved in:
Bibliographic Details
Main Authors: Mamdouh A. Al-Harthi, Bijal Kottukkal Bahuleyan
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2018/4057282
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of multiwalled carbon nanotubes (MWCNTs) on the properties of polyethylene prepared by in situ polymerization using metallocene catalyst (Cp2ZrCl2) in combination with methylaluminoxane has been studied. The MWCNT was incorporated in the polymer matrix adopting a stirring method. Incorporation of MWCNT causes a drop in molecular weight of the polymer along with an increase in number of branches and increase in crystallinity. It was also observed that addition of MWCNT during metallocene-catalyzed polymerization caused a drop in both the dynamic modulus and Young’s modulus of polyethylene. But the drop in tensile strength was minimal, and there was an increase in elongation at break along with consequent increase in energy at break.
ISSN:1687-8434
1687-8442