New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences

Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements...

Full description

Saved in:
Bibliographic Details
Main Author: Bahar Demirtürk
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/14/2321
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246541140721664
author Bahar Demirtürk
author_facet Bahar Demirtürk
author_sort Bahar Demirtürk
collection DOAJ
description Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements of the k-Fibonacci and k-Oresme sequences were analyzed using matrix algebra through matrix structures created by connecting the characteristic equations and roots of these sequences. In this context, using the properties of these matrices, the identities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mi>n</mi><mn>2</mn></msubsup><mo>−</mo><msub><mi>A</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>A</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mi>n</mi><mn>2</mn></msubsup><mo>−</mo><msub><mi>A</mi><mi>n</mi></msub><msub><mi>A</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><msup><mi>k</mi><mn>2</mn></msup></mrow></mfrac></mstyle><msubsup><mi>A</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mi>n</mi><mn>2</mn></msubsup><mo>−</mo><msub><mi>B</mi><mi>n</mi></msub><msub><mi>B</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><msup><mi>k</mi><mn>2</mn></msup></mrow></mfrac></mstyle><msubsup><mi>B</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>, and some generalizations such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></mrow><mn>2</mn></msubsup><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msub><mi>A</mi><mrow><mi>n</mi><mo>−</mo><mi>t</mi></mrow></msub><msub><mi>B</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msub><msub><mi>A</mi><mrow><mi>t</mi><mo>+</mo><mi>m</mi></mrow></msub><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msup><mi>k</mi><mrow><mn>2</mn><mi>t</mi><mo>−</mo><mn>2</mn><mi>n</mi></mrow></msup><msubsup><mi>A</mi><mrow><mi>t</mi><mo>+</mo><mi>m</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>2</mn><mi>t</mi></mrow></msup><msubsup><mi>B</mi><mrow><mi>n</mi><mo>−</mo><mi>t</mi></mrow><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mrow><mi>t</mi><mo>+</mo><mi>m</mi></mrow><mn>2</mn></msubsup><mo>−</mo><msub><mi>B</mi><mrow><mi>t</mi><mo>−</mo><mi>n</mi></mrow></msub><msub><mi>A</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msub><msub><mi>A</mi><mrow><mi>t</mi><mo>+</mo><mi>m</mi></mrow></msub><mo>+</mo><msup><mi>k</mi><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mi>t</mi></mrow></msup><msubsup><mi>A</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></msup><msubsup><mi>A</mi><mrow><mi>t</mi><mo>−</mo><mi>n</mi></mrow><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, and more were derived, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mo>ℤ</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>≠</mo><mi>n</mi></mrow></semantics></math></inline-formula>. In addition to this, the solution pairs of the algebraic equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><msub><mi>B</mi><mi>p</mi></msub><mi>x</mi><mi>y</mi><mo>+</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>p</mi></mrow></msup><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>q</mi></mrow></msup><msubsup><mi>A</mi><mi>p</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msub><mi>A</mi><mi>p</mi></msub><mi>x</mi><mi>y</mi><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>p</mi></mrow></msup><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>q</mi></mrow></msup><msubsup><mi>B</mi><mi>p</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><msub><mi>B</mi><mi>p</mi></msub><mi>x</mi><mi>y</mi><mo>+</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>p</mi></mrow></msup><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>q</mi></mrow></msup><msubsup><mi>A</mi><mi>p</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> are presented, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>B</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula> are k-Oresme and k-Oresme–Lucas numbers, respectively.
format Article
id doaj-art-210d00c539fc4d1e910702fbb528b941
institution Kabale University
issn 2227-7390
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-210d00c539fc4d1e910702fbb528b9412025-08-20T03:58:27ZengMDPI AGMathematics2227-73902025-07-011314232110.3390/math13142321New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas SequencesBahar Demirtürk0Department of Fundamental Sciences, Engineering and Architecture Faculty, Izmir Bakırçay University, 35665 Izmir, TürkiyeNumber sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements of the k-Fibonacci and k-Oresme sequences were analyzed using matrix algebra through matrix structures created by connecting the characteristic equations and roots of these sequences. In this context, using the properties of these matrices, the identities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mi>n</mi><mn>2</mn></msubsup><mo>−</mo><msub><mi>A</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>A</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mi>n</mi><mn>2</mn></msubsup><mo>−</mo><msub><mi>A</mi><mi>n</mi></msub><msub><mi>A</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><msup><mi>k</mi><mn>2</mn></msup></mrow></mfrac></mstyle><msubsup><mi>A</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mi>n</mi><mn>2</mn></msubsup><mo>−</mo><msub><mi>B</mi><mi>n</mi></msub><msub><mi>B</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><msup><mi>k</mi><mn>2</mn></msup></mrow></mfrac></mstyle><msubsup><mi>B</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>, and some generalizations such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></mrow><mn>2</mn></msubsup><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msub><mi>A</mi><mrow><mi>n</mi><mo>−</mo><mi>t</mi></mrow></msub><msub><mi>B</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msub><msub><mi>A</mi><mrow><mi>t</mi><mo>+</mo><mi>m</mi></mrow></msub><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msup><mi>k</mi><mrow><mn>2</mn><mi>t</mi><mo>−</mo><mn>2</mn><mi>n</mi></mrow></msup><msubsup><mi>A</mi><mrow><mi>t</mi><mo>+</mo><mi>m</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>2</mn><mi>t</mi></mrow></msup><msubsup><mi>B</mi><mrow><mi>n</mi><mo>−</mo><mi>t</mi></mrow><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mrow><mi>t</mi><mo>+</mo><mi>m</mi></mrow><mn>2</mn></msubsup><mo>−</mo><msub><mi>B</mi><mrow><mi>t</mi><mo>−</mo><mi>n</mi></mrow></msub><msub><mi>A</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msub><msub><mi>A</mi><mrow><mi>t</mi><mo>+</mo><mi>m</mi></mrow></msub><mo>+</mo><msup><mi>k</mi><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mi>t</mi></mrow></msup><msubsup><mi>A</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></msup><msubsup><mi>A</mi><mrow><mi>t</mi><mo>−</mo><mi>n</mi></mrow><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, and more were derived, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mo>ℤ</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>≠</mo><mi>n</mi></mrow></semantics></math></inline-formula>. In addition to this, the solution pairs of the algebraic equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><msub><mi>B</mi><mi>p</mi></msub><mi>x</mi><mi>y</mi><mo>+</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>p</mi></mrow></msup><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>q</mi></mrow></msup><msubsup><mi>A</mi><mi>p</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msub><mi>A</mi><mi>p</mi></msub><mi>x</mi><mi>y</mi><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>p</mi></mrow></msup><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>q</mi></mrow></msup><msubsup><mi>B</mi><mi>p</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><msub><mi>B</mi><mi>p</mi></msub><mi>x</mi><mi>y</mi><mo>+</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>p</mi></mrow></msup><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><msup><mi>k</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mo stretchy="false">)</mo><msup><mi>k</mi><mrow><mo>−</mo><mn>2</mn><mi>q</mi></mrow></msup><msubsup><mi>A</mi><mi>p</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> are presented, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>B</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula> are k-Oresme and k-Oresme–Lucas numbers, respectively.https://www.mdpi.com/2227-7390/13/14/2321generalized Fibonacci sequencesk-Oresme sequencesmatrix representationsolutions of algebraic equations
spellingShingle Bahar Demirtürk
New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences
Mathematics
generalized Fibonacci sequences
k-Oresme sequences
matrix representation
solutions of algebraic equations
title New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences
title_full New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences
title_fullStr New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences
title_full_unstemmed New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences
title_short New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences
title_sort new identities and equation solutions involving k oresme and k oresme lucas sequences
topic generalized Fibonacci sequences
k-Oresme sequences
matrix representation
solutions of algebraic equations
url https://www.mdpi.com/2227-7390/13/14/2321
work_keys_str_mv AT bahardemirturk newidentitiesandequationsolutionsinvolvingkoresmeandkoresmelucassequences