Identification of novel risk factors for community-acquired Clostridium difficile infection using spatial statistics and geographic information system analyses.

<h4>Background</h4>The rate of community-acquired Clostridium difficile infection (CA-CDI) is increasing. While receipt of antibiotics remains an important risk factor for CDI, studies related to acquisition of C. difficile outside of hospitals are lacking. As a result, risk factors for...

Full description

Saved in:
Bibliographic Details
Main Authors: Deverick J Anderson, Leoncio Flavio Rojas, Shera Watson, Lauren P Knelson, Sohayla Pruitt, Sarah S Lewis, Rebekah W Moehring, Emily E Sickbert Bennett, David J Weber, Luke F Chen, Daniel J Sexton, CDC Prevention Epicenters Program
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0176285&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<h4>Background</h4>The rate of community-acquired Clostridium difficile infection (CA-CDI) is increasing. While receipt of antibiotics remains an important risk factor for CDI, studies related to acquisition of C. difficile outside of hospitals are lacking. As a result, risk factors for exposure to C. difficile in community settings have been inadequately studied.<h4>Main objective</h4>To identify novel environmental risk factors for CA-CDI.<h4>Methods</h4>We performed a population-based retrospective cohort study of patients with CA-CDI from 1/1/2007 through 12/31/2014 in a 10-county area in central North Carolina. 360 Census Tracts in these 10 counties were used as the demographic Geographic Information System (GIS) base-map. Longitude and latitude (X, Y) coordinates were generated from patient home addresses and overlaid to Census Tracts polygons using ArcGIS; ArcView was used to assess "hot-spots" or clusters of CA-CDI. We then constructed a mixed hierarchical model to identify environmental variables independently associated with increased rates of CA-CDI.<h4>Results</h4>A total of 1,895 unique patients met our criteria for CA-CDI. The mean patient age was 54.5 years; 62% were female and 70% were Caucasian. 402 (21%) patient addresses were located in "hot spots" or clusters of CA-CDI (p<0.001). "Hot spot" census tracts were scattered throughout the 10 counties. After adjusting for clustering and population density, age ≥ 60 years (p = 0.03), race (<0.001), proximity to a livestock farm (0.01), proximity to farming raw materials services (0.02), and proximity to a nursing home (0.04) were independently associated with increased rates of CA-CDI.<h4>Conclusions</h4>Our study is the first to use spatial statistics and mixed models to identify important environmental risk factors for acquisition of C. difficile and adds to the growing evidence that farm practices may put patients at risk for important drug-resistant infections.
ISSN:1932-6203