Prediction of thermophysical properties of R-454B based on molecular dynamic simulation and SAFT-based equation of state
Abstract R-454B is an excellent choice for refrigeration systems due to its environmentally friendly profile. In this study, the thermophysical properties of R-454B refrigerant are predicted using molecular dynamics (MD) simulations coupled with a SAFT-based equation of state (EoS). Since experiment...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-06-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-03928-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract R-454B is an excellent choice for refrigeration systems due to its environmentally friendly profile. In this study, the thermophysical properties of R-454B refrigerant are predicted using molecular dynamics (MD) simulations coupled with a SAFT-based equation of state (EoS). Since experimental data on the thermophysical properties of R-454B are generally scarce in technical applications, exploring these properties is essential. In this work, the COMPASS force field is employed to develop the MD simulations. The saturated density, vapor pressure, and isobaric heat capacity of R-454B were simulated. The average ARD% for the isobaric heat capacity was approximately 7.66% over the temperature range of 273.15–303.15 K. The PC-SAFT equation of state (EoS) was coupled with MD simulation to predict the thermodynamic properties of R-454B across a broad range of pressures and temperatures. In this regard, the PC-SAFT model parameters were adjusted using the simulated saturated liquid density and vapor pressure data. The obtained PC-SAFT model parameters were utilized to predict the speed of sound, specific heat capacity, and Joule–Thomson coefficient of R-454B. The results indicate that the proposed model can satisfactorily predict the vapor and liquid thermophysical properties of R-454B. This methodology can be employed to estimate second-order derivative thermodynamic properties of novel refrigerants prior to synthesis, potentially reducing the costs and time associated with experimental development. |
|---|---|
| ISSN: | 2045-2322 |