The Logic of Hebbian Learning

We present the logic of Hebbian learning, a dynamic logicwhose semantics1 are expressed in terms of a layered neuralnetwork learning via Hebb’s associative learning rule. Its lan-guage consists of modality Tφ (read “typically φ,” formalizedas forward propagation), conditionals φ ⇒ ψ (read “typi-call...

Full description

Saved in:
Bibliographic Details
Main Authors: Caleb Kisby, Saúl Blanco, Lawrence Moss
Format: Article
Language:English
Published: LibraryPress@UF 2022-05-01
Series:Proceedings of the International Florida Artificial Intelligence Research Society Conference
Subjects:
Online Access:https://journals.flvc.org/FLAIRS/article/view/130735
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the logic of Hebbian learning, a dynamic logicwhose semantics1 are expressed in terms of a layered neuralnetwork learning via Hebb’s associative learning rule. Its lan-guage consists of modality Tφ (read “typically φ,” formalizedas forward propagation), conditionals φ ⇒ ψ (read “typi-cally φ are ψ”), as well as dynamic modalities [φ+]ψ (read“evaluate ψ after performing Hebbian update on φ”). We giveaxioms and inference rules that are sound with respect to theneural semantics; these axioms characterize Hebbian learningand its interaction with propagation. The upshot is that thislogic describes a neuro-symbolic agent that both learns fromexperience and also reasons about what it has learned.
ISSN:2334-0754
2334-0762