Diagnosis Test Accuracy of Artificial Intelligence for Endometrial Cancer: Systematic Review and Meta-Analysis

BackgroundEndometrial cancer is one of the most common gynecological tumors, and early screening and diagnosis are crucial for its treatment. Research on the application of artificial intelligence (AI) in the diagnosis of endometrial cancer is increasing, but there is current...

Full description

Saved in:
Bibliographic Details
Main Authors: Longyun Wang, Zeyu Wang, Bowei Zhao, Kai Wang, Jingying Zheng, Lijing Zhao
Format: Article
Language:English
Published: JMIR Publications 2025-04-01
Series:Journal of Medical Internet Research
Online Access:https://www.jmir.org/2025/1/e66530
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BackgroundEndometrial cancer is one of the most common gynecological tumors, and early screening and diagnosis are crucial for its treatment. Research on the application of artificial intelligence (AI) in the diagnosis of endometrial cancer is increasing, but there is currently no comprehensive meta-analysis to evaluate the diagnostic accuracy of AI in screening for endometrial cancer. ObjectiveThis paper presents a systematic review of AI-based endometrial cancer screening, which is needed to clarify its diagnostic accuracy and provide evidence for the application of AI technology in screening for endometrial cancer. MethodsA search was conducted across PubMed, Embase, Cochrane Library, Web of Science, and Scopus databases to include studies published in English, which evaluated the performance of AI in endometrial cancer screening. A total of 2 independent reviewers screened the titles and abstracts, and the quality of the selected studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies—2 (QUADAS-2) tool. The certainty of the diagnostic test evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. ResultsA total of 13 studies were included, and the hierarchical summary receiver operating characteristic model used for the meta-analysis showed that the overall sensitivity of AI-based endometrial cancer screening was 86% (95% CI 79%-90%) and specificity was 92% (95% CI 87%-95%). Subgroup analysis revealed similar results across AI type, study region, publication year, and study type, but the overall quality of evidence was low. ConclusionsAI-based endometrial cancer screening can effectively detect patients with endometrial cancer, but large-scale population studies are needed in the future to further clarify the diagnostic accuracy of AI in screening for endometrial cancer. Trial RegistrationPROSPERO CRD42024519835; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024519835
ISSN:1438-8871