Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull
Pistachio green hull (PGH) represents the non-edible fraction obtained after the seed is harvested and is an important source of phenolic compounds. Solid-state fermentation (SSF) is a viable biotechnological and economical technique for extracting phenolic compounds. This study aimed to evaluate th...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Microorganisms |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-2607/13/1/35 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pistachio green hull (PGH) represents the non-edible fraction obtained after the seed is harvested and is an important source of phenolic compounds. Solid-state fermentation (SSF) is a viable biotechnological and economical technique for extracting phenolic compounds. This study aimed to evaluate the SSF with <i>Aspergillus niger</i> GH1 to recover total phenolic compounds (TPC) with antioxidant capacity (AC) from PGH. For this, the time of higher TPC and AC (DPPH [2,2-diphenyl-1-picrylhydrazyl], ABTS [2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate)], FRAP [ferric reducing antioxidant power]) was selected. Then, moisture, inoculum concentration, and aeration rate were evaluated. <i>A. niger</i> GH1 was able to grow and colonize the PGH, with the higher value of TPC (23.83 mg/g of dry mass (gdm)) obtained after 24 h of culture, which significantly correlated with AC (Pearson’s R = 0.69). Moisture and aeration rate were the main factors influencing TPC. The highest values for both TPC and AC were achieved in treatment 8 (60% moisture, 5 × 10<sup>6</sup> spores/mL, and 1 L/Kgwm min), resulting in a 129% and 1039% increase, respectively. Gallic acid 4-<i>O</i>-glucoside and geranine were identified in the PGH extracts using high-performance liquid chromatography coupled with mass spectrometry. The SSF provides eco-friendly alternatives for releasing bioactive compounds from PGH, adding value to this waste. |
---|---|
ISSN: | 2076-2607 |