MODELS FOR DETERMINING MAXIMUM DEGREE FILLING CHANNELS OF CIRCULAR SECTION SHAPE

Objectives The task was to obtain a model for determining the maximum possible degree of filling the circular section channels in the earthen channel based on the condition of ensuring the stability of slopes and the minimum volume of excavation during their construction, as well as finding the opti...

Full description

Saved in:
Bibliographic Details
Main Authors: A. K. Alibekov, G. A. Аlibekov
Format: Article
Language:Russian
Published: Dagestan State Technical University 2019-08-01
Series:Вестник Дагестанского государственного технического университета: Технические науки
Subjects:
Online Access:https://vestnik.dgtu.ru/jour/article/view/663
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849411673492815872
author A. K. Alibekov
G. A. Аlibekov
author_facet A. K. Alibekov
G. A. Аlibekov
author_sort A. K. Alibekov
collection DOAJ
description Objectives The task was to obtain a model for determining the maximum possible degree of filling the circular section channels in the earthen channel based on the condition of ensuring the stability of slopes and the minimum volume of excavation during their construction, as well as finding the optimum degree of filling fortified channels of a closed profile corresponding to maximum throughput.Method In work analytical methods of differential calculus and the solution of implicit equations are used.Result The experience of domestic and foreign researchers was taken into account to solve the set tasks, select research methods and criteria for optimizing channel parameters. Two cases of circular-shaped channels are considered: 1) in the earth channel, 2) reinforced with a closed transverse profile. For the case of a hydraulically most advantageous circular channel in the earthchannel channel, equating the first derivative of the equation of a circle with the reciprocal of the allowable embedding coefficient of the slopes obtained an analytical solution for determining the maximum degree of filling from the slope stability condition, which was not dependent on hydraulic flow elements. In the case of non-cohesive soils that form the channel, the circular channel can be filled to a depth not exceeding 20 percent of the channel radius. At the same time, the average flow rate should remain in the range from non-venting to non-blurring. In order to be able to determine the flow rate, analytical expressions are given for finding hydraulic flow elements in a circular channel. When determining the volume of excavation for the construction of the channel, the excess of the channel edge above the maximum water level in the channel was taken into account. For the case of a fortified channel of a closed transverse profile, by taking the derivatives from the Chezy formula, we obtained the optimal values of flow rate and average velocity.Conclusion A fortified closed circular profile channel has a maximum capacity with a relative degree of filling of 0.938, and the maximum average velocity of a fluid in a pressureless channel is achieved with a degree of filling of 0.815. To determine the maximum permissible relative degree of filling in the case of a circular section channel in the earthen channel, analytical dependences were obtained, before using which, according to the reference literature, it is necessary to take the value of the slope coefficient for this type of channel bed soil.
format Article
id doaj-art-20876389baee437fbf53e3252ca6de25
institution Kabale University
issn 2073-6185
2542-095X
language Russian
publishDate 2019-08-01
publisher Dagestan State Technical University
record_format Article
series Вестник Дагестанского государственного технического университета: Технические науки
spelling doaj-art-20876389baee437fbf53e3252ca6de252025-08-20T03:34:42ZrusDagestan State Technical UniversityВестник Дагестанского государственного технического университета: Технические науки2073-61852542-095X2019-08-01462283610.21822/2073-6185-2019-46-2-28-36505MODELS FOR DETERMINING MAXIMUM DEGREE FILLING CHANNELS OF CIRCULAR SECTION SHAPEA. K. Alibekov0G. A. Аlibekov1Daghestan State Technical UniversityDaghestan State Technical UniversityObjectives The task was to obtain a model for determining the maximum possible degree of filling the circular section channels in the earthen channel based on the condition of ensuring the stability of slopes and the minimum volume of excavation during their construction, as well as finding the optimum degree of filling fortified channels of a closed profile corresponding to maximum throughput.Method In work analytical methods of differential calculus and the solution of implicit equations are used.Result The experience of domestic and foreign researchers was taken into account to solve the set tasks, select research methods and criteria for optimizing channel parameters. Two cases of circular-shaped channels are considered: 1) in the earth channel, 2) reinforced with a closed transverse profile. For the case of a hydraulically most advantageous circular channel in the earthchannel channel, equating the first derivative of the equation of a circle with the reciprocal of the allowable embedding coefficient of the slopes obtained an analytical solution for determining the maximum degree of filling from the slope stability condition, which was not dependent on hydraulic flow elements. In the case of non-cohesive soils that form the channel, the circular channel can be filled to a depth not exceeding 20 percent of the channel radius. At the same time, the average flow rate should remain in the range from non-venting to non-blurring. In order to be able to determine the flow rate, analytical expressions are given for finding hydraulic flow elements in a circular channel. When determining the volume of excavation for the construction of the channel, the excess of the channel edge above the maximum water level in the channel was taken into account. For the case of a fortified channel of a closed transverse profile, by taking the derivatives from the Chezy formula, we obtained the optimal values of flow rate and average velocity.Conclusion A fortified closed circular profile channel has a maximum capacity with a relative degree of filling of 0.938, and the maximum average velocity of a fluid in a pressureless channel is achieved with a degree of filling of 0.815. To determine the maximum permissible relative degree of filling in the case of a circular section channel in the earthen channel, analytical dependences were obtained, before using which, according to the reference literature, it is necessary to take the value of the slope coefficient for this type of channel bed soil.https://vestnik.dgtu.ru/jour/article/view/663circular channel of sectionstability of soil slopeschannel in the earthen channelchannel of the closed profilevolume of excavation
spellingShingle A. K. Alibekov
G. A. Аlibekov
MODELS FOR DETERMINING MAXIMUM DEGREE FILLING CHANNELS OF CIRCULAR SECTION SHAPE
Вестник Дагестанского государственного технического университета: Технические науки
circular channel of section
stability of soil slopes
channel in the earthen channel
channel of the closed profile
volume of excavation
title MODELS FOR DETERMINING MAXIMUM DEGREE FILLING CHANNELS OF CIRCULAR SECTION SHAPE
title_full MODELS FOR DETERMINING MAXIMUM DEGREE FILLING CHANNELS OF CIRCULAR SECTION SHAPE
title_fullStr MODELS FOR DETERMINING MAXIMUM DEGREE FILLING CHANNELS OF CIRCULAR SECTION SHAPE
title_full_unstemmed MODELS FOR DETERMINING MAXIMUM DEGREE FILLING CHANNELS OF CIRCULAR SECTION SHAPE
title_short MODELS FOR DETERMINING MAXIMUM DEGREE FILLING CHANNELS OF CIRCULAR SECTION SHAPE
title_sort models for determining maximum degree filling channels of circular section shape
topic circular channel of section
stability of soil slopes
channel in the earthen channel
channel of the closed profile
volume of excavation
url https://vestnik.dgtu.ru/jour/article/view/663
work_keys_str_mv AT akalibekov modelsfordeterminingmaximumdegreefillingchannelsofcircularsectionshape
AT gaalibekov modelsfordeterminingmaximumdegreefillingchannelsofcircularsectionshape