ML210 Antagonizes ABCB1- Not ABCG2-Mediated Multidrug Resistance in Colorectal Cancer

<b>Objectives:</b> ABCB1-mediated multidrug resistance (MDR) compromises chemotherapy efficacy in colorectal cancer (CRC). Despite decades of research, no selective ABCB1 inhibitor has achieved clinical success. This study investigates ML210 as a novel ABCB1-specific inhibitor to reverse...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan-Chi Li, Yu-Meng Xiong, Ze-Ping Long, Yi-Ping Huang, Yu-Bin Shu, Ke He, Hong-Yan Sun, Zhi Shi
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/13/5/1245
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<b>Objectives:</b> ABCB1-mediated multidrug resistance (MDR) compromises chemotherapy efficacy in colorectal cancer (CRC). Despite decades of research, no selective ABCB1 inhibitor has achieved clinical success. This study investigates ML210 as a novel ABCB1-specific inhibitor to reverse ABCB1-driven MDR. <b>Methods:</b> Cytotoxicity assays (MTT) were performed on ABCB1-overexpressing HCT-8/V and ABCG2-overexpressing S1-M1-80 CRC cells. Drug accumulation (doxorubicin/mitoxantrone) was quantified via flow cytometry, and cell cycle effects were analyzed using propidium iodide staining. Molecular docking utilized the ABCB1 crystal structure. <b>Results:</b> ML210 selectively reversed ABCB1-mediated resistance to doxorubicin and vincristine in HCT-8/V cells, enhancing intracellular drug accumulation without affecting ABCG2 activity. It induced cell cycle arrest in ABCB1-overexpressing cells and did not alter ABCB1 protein expression. Molecular docking revealed stable binding of ML210 within the ABCB1 substrate pocket through hydrophobic interactions and hydrogen bonding. <b>Conclusions:</b> ML210 is a selective ABCB1 inhibitor that circumvents MDR via direct transport blockade, offering a targeted strategy against ABCB1-mediated chemoresistance in CRC. Its specificity for ABCB1 over ABCG2 highlights potential clinical advantages.
ISSN:2227-9059