Design and Simulation of a Bio-Inspired Deployable Mechanism Achieved by Mimicking the Folding Pattern of Beetles’ Hind Wings

In this paper, a beetle with excellent flight ability and a large folding ratio of its hind wings is selected as the biomimetic design. We mimicked the geometric patterns formed during the folding process of the hind wings to construct a deployable mechanism while calculating the sector angles and d...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongyun Chen, Xin Li, Shujing Wang, Yan Zhao, Yu Zheng
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/5/320
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a beetle with excellent flight ability and a large folding ratio of its hind wings is selected as the biomimetic design. We mimicked the geometric patterns formed during the folding process of the hind wings to construct a deployable mechanism while calculating the sector angles and dihedral angles of the origami mechanism. In the expandable structure of thick plates, hinge-like steps are added on the thick plate to effectively avoid interference motion caused by the folding of the thick plate. The kinematic characteristics of two deployable mechanisms were characterized by ADAMS 2018 software to verify the feasibility of the mechanism design. The finite element method is used to analyze the structural performance of the deployable mechanism, and its modal response is analyzed in both unfolded and folded configurations. The aerodynamic generation of a spatially deployable wing is characterized by computational fluid dynamics (CFD) to study the vortex characteristics at different frame rates. Based on the aerodynamic parameters obtained from CFD simulation, a wavelet neural network is introduced to learn and train the aerodynamic parameters.
ISSN:2313-7673