The Extropy of Concomitants of Generalized Order Statistics from Huang–Kotz–Morgenstern Bivariate Distribution

In this paper, we study the extropy for concomitants of m−generalized order statistics (m−GOSs) from Huang–Kotz–Farlie–Gumbel–Morgenstern (HK-FGM) bivariate distribution. Moreover, the cumulative residual extropy (CREX) and negative cumulative extropy (NCEX) are depicted. Furthermore, the empirical...

Full description

Saved in:
Bibliographic Details
Main Authors: I. A. Husseiny, A. H. Syam
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2022/6385998
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562309630787584
author I. A. Husseiny
A. H. Syam
author_facet I. A. Husseiny
A. H. Syam
author_sort I. A. Husseiny
collection DOAJ
description In this paper, we study the extropy for concomitants of m−generalized order statistics (m−GOSs) from Huang–Kotz–Farlie–Gumbel–Morgenstern (HK-FGM) bivariate distribution. Moreover, the cumulative residual extropy (CREX) and negative cumulative extropy (NCEX) are depicted. Furthermore, the empirical technique in conjunction with the concomitant of m−GOS is used to investigate the problem of estimating the CREX and NCEX. The concomitants of order statistics and record values are offered as some applications of these findings.
format Article
id doaj-art-206b48525ff7454eb9558390efa577b4
institution Kabale University
issn 2314-4785
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-206b48525ff7454eb9558390efa577b42025-02-03T01:22:53ZengWileyJournal of Mathematics2314-47852022-01-01202210.1155/2022/6385998The Extropy of Concomitants of Generalized Order Statistics from Huang–Kotz–Morgenstern Bivariate DistributionI. A. Husseiny0A. H. Syam1Department of MathematicsDepartment of MathematicsIn this paper, we study the extropy for concomitants of m−generalized order statistics (m−GOSs) from Huang–Kotz–Farlie–Gumbel–Morgenstern (HK-FGM) bivariate distribution. Moreover, the cumulative residual extropy (CREX) and negative cumulative extropy (NCEX) are depicted. Furthermore, the empirical technique in conjunction with the concomitant of m−GOS is used to investigate the problem of estimating the CREX and NCEX. The concomitants of order statistics and record values are offered as some applications of these findings.http://dx.doi.org/10.1155/2022/6385998
spellingShingle I. A. Husseiny
A. H. Syam
The Extropy of Concomitants of Generalized Order Statistics from Huang–Kotz–Morgenstern Bivariate Distribution
Journal of Mathematics
title The Extropy of Concomitants of Generalized Order Statistics from Huang–Kotz–Morgenstern Bivariate Distribution
title_full The Extropy of Concomitants of Generalized Order Statistics from Huang–Kotz–Morgenstern Bivariate Distribution
title_fullStr The Extropy of Concomitants of Generalized Order Statistics from Huang–Kotz–Morgenstern Bivariate Distribution
title_full_unstemmed The Extropy of Concomitants of Generalized Order Statistics from Huang–Kotz–Morgenstern Bivariate Distribution
title_short The Extropy of Concomitants of Generalized Order Statistics from Huang–Kotz–Morgenstern Bivariate Distribution
title_sort extropy of concomitants of generalized order statistics from huang kotz morgenstern bivariate distribution
url http://dx.doi.org/10.1155/2022/6385998
work_keys_str_mv AT iahusseiny theextropyofconcomitantsofgeneralizedorderstatisticsfromhuangkotzmorgensternbivariatedistribution
AT ahsyam theextropyofconcomitantsofgeneralizedorderstatisticsfromhuangkotzmorgensternbivariatedistribution
AT iahusseiny extropyofconcomitantsofgeneralizedorderstatisticsfromhuangkotzmorgensternbivariatedistribution
AT ahsyam extropyofconcomitantsofgeneralizedorderstatisticsfromhuangkotzmorgensternbivariatedistribution