MGIDI: An efficient statistical methodology for multivariate analysis of agronomic data
El análisis estadístico de múltiples variables agronómicas es esencial para obtener una comprensión completa y precisa de los rasgos estudiados. Al considerar de manera integrada las diferentes variables, podemos tomar decisiones fundamentadas y efectivas en el ámbito agrícola, maximizando los resul...
Saved in:
| Main Author: | Santos Mamani Franklin |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Selva Andina Research Society
2023-05-01
|
| Series: | Journal of the Selva Andina Biosphere |
| Online Access: | http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2308-38592023000100112&lng=es&nrm=iso&tlng=es |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Combinatorial Approaches to Image Processing and MGIDI for the Efficient Selection of Superior Rice Grain Quality Lines
by: Nahid Feizi, et al.
Published: (2025-03-01) -
Multivariate analysis and multitrait genotype-ideotype distance index (MGIDI) for selection of promising genotypes under drought stress in post rainy sorghum (Sorghum bicolor L. Moench)
by: R. Karthik1* and N. G. Hanamaratti2
Published: (2025-04-01) -
Statistical considerations in the analysis of minirhizotron data and a review of current practice in agronomic research
by: Simon Riley, et al.
Published: (2025-01-01) -
Using multivariate statistics /
by: Tabachnick, Barbara G., 1936-
Published: (2007) -
Sweet pepper yield modeling via deep learning and selection of superior genotypes using GBLUP and MGIDI
by: Hamid Hatami Maleki, et al.
Published: (2025-04-01)