Special Kähler geometry and holomorphic Lagrangian fibrations

Given a holomorphic Lagrangian fibration of a compact hyperkähler manifold, we use the differential geometry of the special Kähler metric that exists on the base away from the discriminant locus, and show that the pullback of the tangent bundle of the base to the total space of a family of minimal r...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Yang, Tosatti, Valentino
Format: Article
Language:English
Published: Académie des sciences 2024-06-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.629/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206212388454400
author Li, Yang
Tosatti, Valentino
author_facet Li, Yang
Tosatti, Valentino
author_sort Li, Yang
collection DOAJ
description Given a holomorphic Lagrangian fibration of a compact hyperkähler manifold, we use the differential geometry of the special Kähler metric that exists on the base away from the discriminant locus, and show that the pullback of the tangent bundle of the base to the total space of a family of minimal rational curves admits a parallel splitting. The splitting is nontrivial when the base is not half-dimensional projective space. Combining this with results of Voisin, Hwang and Bakker–Schnell, we deduce that the base must be projective space, a result first proved by Hwang.
format Article
id doaj-art-20577a3acceb47b0b93bd82e4e14f999
institution Kabale University
issn 1778-3569
language English
publishDate 2024-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-20577a3acceb47b0b93bd82e4e14f9992025-02-07T11:13:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-06-01362S117119610.5802/crmath.62910.5802/crmath.629Special Kähler geometry and holomorphic Lagrangian fibrationsLi, Yang0Tosatti, Valentino1Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USACourant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, USAGiven a holomorphic Lagrangian fibration of a compact hyperkähler manifold, we use the differential geometry of the special Kähler metric that exists on the base away from the discriminant locus, and show that the pullback of the tangent bundle of the base to the total space of a family of minimal rational curves admits a parallel splitting. The splitting is nontrivial when the base is not half-dimensional projective space. Combining this with results of Voisin, Hwang and Bakker–Schnell, we deduce that the base must be projective space, a result first proved by Hwang.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.629/
spellingShingle Li, Yang
Tosatti, Valentino
Special Kähler geometry and holomorphic Lagrangian fibrations
Comptes Rendus. Mathématique
title Special Kähler geometry and holomorphic Lagrangian fibrations
title_full Special Kähler geometry and holomorphic Lagrangian fibrations
title_fullStr Special Kähler geometry and holomorphic Lagrangian fibrations
title_full_unstemmed Special Kähler geometry and holomorphic Lagrangian fibrations
title_short Special Kähler geometry and holomorphic Lagrangian fibrations
title_sort special kahler geometry and holomorphic lagrangian fibrations
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.629/
work_keys_str_mv AT liyang specialkahlergeometryandholomorphiclagrangianfibrations
AT tosattivalentino specialkahlergeometryandholomorphiclagrangianfibrations