Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.

The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited EC...

Full description

Saved in:
Bibliographic Details
Main Authors: Shinnosuke Sawano, Satoshi Kodera, Naoto Setoguchi, Kengo Tanabe, Shunichi Kushida, Junji Kanda, Mike Saji, Mamoru Nanasato, Hisataka Maki, Hideo Fujita, Nahoko Kato, Hiroyuki Watanabe, Minami Suzuki, Masao Takahashi, Naoko Sawada, Masao Yamasaki, Masataka Sato, Susumu Katsushika, Hiroki Shinohara, Norifumi Takeda, Katsuhito Fujiu, Masao Daimon, Hiroshi Akazawa, Hiroyuki Morita, Issei Komuro
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0307978
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846098985398304768
author Shinnosuke Sawano
Satoshi Kodera
Naoto Setoguchi
Kengo Tanabe
Shunichi Kushida
Junji Kanda
Mike Saji
Mamoru Nanasato
Hisataka Maki
Hideo Fujita
Nahoko Kato
Hiroyuki Watanabe
Minami Suzuki
Masao Takahashi
Naoko Sawada
Masao Yamasaki
Masataka Sato
Susumu Katsushika
Hiroki Shinohara
Norifumi Takeda
Katsuhito Fujiu
Masao Daimon
Hiroshi Akazawa
Hiroyuki Morita
Issei Komuro
author_facet Shinnosuke Sawano
Satoshi Kodera
Naoto Setoguchi
Kengo Tanabe
Shunichi Kushida
Junji Kanda
Mike Saji
Mamoru Nanasato
Hisataka Maki
Hideo Fujita
Nahoko Kato
Hiroyuki Watanabe
Minami Suzuki
Masao Takahashi
Naoko Sawada
Masao Yamasaki
Masataka Sato
Susumu Katsushika
Hiroki Shinohara
Norifumi Takeda
Katsuhito Fujiu
Masao Daimon
Hiroshi Akazawa
Hiroyuki Morita
Issei Komuro
author_sort Shinnosuke Sawano
collection DOAJ
description The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited ECG data. We pretrained Vision Transformer (ViT) models by reconstructing the masked ECG data with MAE. We fine-tuned this MAE-based ECG pretrained model on ECG-echocardiography data from The University of Tokyo Hospital (UTokyo) for the detection of left ventricular systolic dysfunction (LVSD), and then evaluated it using multi-center external validation data from seven institutions, employing the area under the receiver operating characteristic curve (AUROC) for assessment. We included 38,245 ECG-echocardiography pairs from UTokyo and 229,439 pairs from all institutions. The performances of MAE-based ECG models pretrained using ECG data from UTokyo were significantly higher than that of other Deep Neural Network models across all external validation cohorts (AUROC, 0.913-0.962 for LVSD, p < 0.001). Moreover, we also found improvements for the MAE-based ECG analysis model depending on the model capacity and the amount of training data. Additionally, the MAE-based ECG analysis model maintained high performance even on the ECG benchmark dataset (PTB-XL). Our proposed method developed high performance MAE-based ECG analysis models using limited ECG data.
format Article
id doaj-art-204ccd9b977e45ee8257d4026be4bf06
institution Kabale University
issn 1932-6203
language English
publishDate 2024-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-204ccd9b977e45ee8257d4026be4bf062025-01-01T05:31:07ZengPublic Library of Science (PLoS)PLoS ONE1932-62032024-01-01198e030797810.1371/journal.pone.0307978Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.Shinnosuke SawanoSatoshi KoderaNaoto SetoguchiKengo TanabeShunichi KushidaJunji KandaMike SajiMamoru NanasatoHisataka MakiHideo FujitaNahoko KatoHiroyuki WatanabeMinami SuzukiMasao TakahashiNaoko SawadaMasao YamasakiMasataka SatoSusumu KatsushikaHiroki ShinoharaNorifumi TakedaKatsuhito FujiuMasao DaimonHiroshi AkazawaHiroyuki MoritaIssei KomuroThe generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited ECG data. We pretrained Vision Transformer (ViT) models by reconstructing the masked ECG data with MAE. We fine-tuned this MAE-based ECG pretrained model on ECG-echocardiography data from The University of Tokyo Hospital (UTokyo) for the detection of left ventricular systolic dysfunction (LVSD), and then evaluated it using multi-center external validation data from seven institutions, employing the area under the receiver operating characteristic curve (AUROC) for assessment. We included 38,245 ECG-echocardiography pairs from UTokyo and 229,439 pairs from all institutions. The performances of MAE-based ECG models pretrained using ECG data from UTokyo were significantly higher than that of other Deep Neural Network models across all external validation cohorts (AUROC, 0.913-0.962 for LVSD, p < 0.001). Moreover, we also found improvements for the MAE-based ECG analysis model depending on the model capacity and the amount of training data. Additionally, the MAE-based ECG analysis model maintained high performance even on the ECG benchmark dataset (PTB-XL). Our proposed method developed high performance MAE-based ECG analysis models using limited ECG data.https://doi.org/10.1371/journal.pone.0307978
spellingShingle Shinnosuke Sawano
Satoshi Kodera
Naoto Setoguchi
Kengo Tanabe
Shunichi Kushida
Junji Kanda
Mike Saji
Mamoru Nanasato
Hisataka Maki
Hideo Fujita
Nahoko Kato
Hiroyuki Watanabe
Minami Suzuki
Masao Takahashi
Naoko Sawada
Masao Yamasaki
Masataka Sato
Susumu Katsushika
Hiroki Shinohara
Norifumi Takeda
Katsuhito Fujiu
Masao Daimon
Hiroshi Akazawa
Hiroyuki Morita
Issei Komuro
Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.
PLoS ONE
title Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.
title_full Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.
title_fullStr Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.
title_full_unstemmed Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.
title_short Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.
title_sort applying masked autoencoder based self supervised learning for high capability vision transformers of electrocardiographies
url https://doi.org/10.1371/journal.pone.0307978
work_keys_str_mv AT shinnosukesawano applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT satoshikodera applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT naotosetoguchi applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT kengotanabe applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT shunichikushida applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT junjikanda applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT mikesaji applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT mamorunanasato applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT hisatakamaki applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT hideofujita applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT nahokokato applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT hiroyukiwatanabe applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT minamisuzuki applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT masaotakahashi applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT naokosawada applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT masaoyamasaki applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT masatakasato applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT susumukatsushika applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT hirokishinohara applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT norifumitakeda applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT katsuhitofujiu applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT masaodaimon applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT hiroshiakazawa applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT hiroyukimorita applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies
AT isseikomuro applyingmaskedautoencoderbasedselfsupervisedlearningforhighcapabilityvisiontransformersofelectrocardiographies