Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations

Abstract This study aimed to explore the combined impacts of occupational noise and dust on hearing and extra-auditory functions and identify associated risk factors via machine learning techniques. Data from 14,145 workers (627 with occupational noise-induced hearing loss (ONIHL)) at Hebei Medical...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong Li, Xin Sun, Yongtao Qu, Shuling Yang, Yueyi Zhai, Yan Qu
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-93976-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study aimed to explore the combined impacts of occupational noise and dust on hearing and extra-auditory functions and identify associated risk factors via machine learning techniques. Data from 14,145 workers (627 with occupational noise-induced hearing loss (ONIHL)) at Hebei Medical Examination Center (2017–2023) were analyzed. Workers with combined exposure and without specific contraindications or other hearing impairment causes were included. Demographic and clinical data were gathered. Chi-square and Mann-Whitney U tests examined variables, and multivariate logistic regression determined ONIHL risk factors. Machine learning algorithms like Logistic Regression and Random Forest were developed, optimized, and evaluated. Results showed significant differences in gender, exposure, blood pressure, smoking, etc. between ONIHL and non-ONIHL groups. Male gender, combined exposure, diastolic blood pressure elevation, smoking, fasting blood glucose elevation, and age were positive predictors, while systolic blood pressure elevation was negative. The logistic model had the highest predictive ability (ROC = 0.714). Subgroup analysis revealed a significant positive correlation in specific subgroups. In summary, combined exposure increased ONIHL risk and affected health. Machine learning effectively predicted ONIHL, but the study had limitations and needed further research.
ISSN:2045-2322